Understanding dislocation velocity in TaW using explainable machine learning

被引:1
作者
Kedharnath, A. [1 ,2 ]
Kapoor, Rajeev [1 ,2 ]
Sarkar, Apu [1 ,2 ]
机构
[1] Bhabha Atom Res Ctr, Mech Met Div, Mumbai 400085, India
[2] Homi Bhabha Natl Inst, Div Engn Sci, Mumbai 400094, India
关键词
Dislocation; Slip planes {110} {112} {123}; Tungsten effect; Temperature; Resolved shear stress; SIMULATION; TANTALUM; DYNAMICS;
D O I
10.1007/s42864-024-00306-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present work calculated the velocity of edge dislocations in the Ta-W system using molecular dynamics (MD) simulations and through machine learning (ML), identified the key parameters influencing the velocity. To achieve this, MD simulations were conducted at various values of the extrinsic parameters-temperatures and applied stresses (tau app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau }_{\text{app}}$$\end{document}), and the intrinsic variables-slip systems and alloying contents of tungsten in tantalum. Configurations containing edge dislocations on {110}/{112}/{123} planes were employed, and dislocation velocities were subsequently estimated. The MD results were processed using ML models, specifically extreme gradient boosting and SHapley Additive exPlanations (SHAP). SHAP analysis identified tau app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau }_{\text{app}}$$\end{document} as the most influencing parameter affecting velocity, followed by slip plane, temperature, and W addition. SHAP estimated the base velocity value (vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document}) to be 1376 m<middle dot>s-1. vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document} was calculated by training SHAP on a parameter-less model. vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document} could be increased by applying tau app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau }_{\text{app}}$$\end{document} of at least 1 GPa, through slipping on the {112} and {123} planes, at temperatures of 0 and 300 K, and in configurations with 0 wt.% and 5 wt.% W. The importance of vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document} on deformation was established.
引用
收藏
页码:327 / 336
页数:10
相关论文
共 50 条
[31]   New insights into hydrogen uptake on porous carbon materials via explainable machine learning [J].
Kusdhany, Muhammad Irfan Maulana ;
Lyth, Stephen Matthew .
CARBON, 2021, 179 :190-201
[32]   Explainable machine learning for predicting stomatal conductance across multiple plant functional types [J].
Gaur, Srishti ;
Drewry, Darren T. .
AGRICULTURAL AND FOREST METEOROLOGY, 2024, 350
[33]   Exploring spatiotemporal patterns of algal cell density in lake Dianchi with explainable machine learning [J].
Tao, Yiwen ;
Ren, Jingli ;
Zhu, Huaiping ;
Li, Jian ;
Cui, Hao .
ENVIRONMENTAL POLLUTION, 2024, 356
[34]   Understanding climate change with statistical downscaling and machine learning [J].
Jebeile, Julie ;
Lam, Vincent ;
Raez, Tim .
SYNTHESE, 2021, 199 (1-2) :1877-1897
[35]   Near-real-time forecasting of reservoir inflows using explainable machine learning and short-term weather forecasts [J].
Sushanth, Kallem ;
Mishra, Ashok ;
Mukhopadhyay, Parthasarathi ;
Singh, Rajendra .
STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2023, 37 (10) :3945-3965
[36]   Understanding the effects of socioeconomic factors on housing price appreciation using explainable AI [J].
Jin, Shengxiang ;
Zheng, Huixin ;
Marantz, Nicholas ;
Roy, Avipsa .
APPLIED GEOGRAPHY, 2024, 169
[37]   Velocity Prediction of a Pipeline Inspection Gauge (PIG) with Machine Learning [J].
Galvao De Freitas, Victor Carvalho ;
De Araujo, Valberio Gonzaga ;
de Carvalho Crisostomo, Daniel Carlos ;
De Lima, Gustavo Fernandes ;
Doria Neto, Adriao Duarte ;
Salazar, Andres Ortiz .
SENSORS, 2022, 22 (23)
[38]   Vertical Velocity Diagnosed From Surface Data With Machine Learning [J].
He, Jing ;
Mahadevan, Amala .
GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (06)
[39]   Using habituation in machine learning [J].
Marsland, Stephen .
NEUROBIOLOGY OF LEARNING AND MEMORY, 2009, 92 (02) :260-266
[40]   Prediction of dislocation - grain boundary interactions in FCC aluminum bicrystals using a modified continuum criterion and machine learning methods [J].
Gravell, Jamie D. ;
Cho, Jaehyun ;
Lee, Seungjoon ;
Aubry, Sylvie ;
Ryu, Ill .
MATERIALIA, 2023, 31