Understanding dislocation velocity in TaW using explainable machine learning

被引:0
作者
Kedharnath, A. [1 ,2 ]
Kapoor, Rajeev [1 ,2 ]
Sarkar, Apu [1 ,2 ]
机构
[1] Bhabha Atom Res Ctr, Mech Met Div, Mumbai 400085, India
[2] Homi Bhabha Natl Inst, Div Engn Sci, Mumbai 400094, India
来源
TUNGSTEN | 2024年
关键词
Dislocation; Slip planes {110} {112} {123}; Tungsten effect; Temperature; Resolved shear stress; SIMULATION; TANTALUM; DYNAMICS;
D O I
10.1007/s42864-024-00306-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present work calculated the velocity of edge dislocations in the Ta-W system using molecular dynamics (MD) simulations and through machine learning (ML), identified the key parameters influencing the velocity. To achieve this, MD simulations were conducted at various values of the extrinsic parameters-temperatures and applied stresses (tau app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau }_{\text{app}}$$\end{document}), and the intrinsic variables-slip systems and alloying contents of tungsten in tantalum. Configurations containing edge dislocations on {110}/{112}/{123} planes were employed, and dislocation velocities were subsequently estimated. The MD results were processed using ML models, specifically extreme gradient boosting and SHapley Additive exPlanations (SHAP). SHAP analysis identified tau app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau }_{\text{app}}$$\end{document} as the most influencing parameter affecting velocity, followed by slip plane, temperature, and W addition. SHAP estimated the base velocity value (vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document}) to be 1376 m<middle dot>s-1. vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document} was calculated by training SHAP on a parameter-less model. vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document} could be increased by applying tau app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau }_{\text{app}}$$\end{document} of at least 1 GPa, through slipping on the {112} and {123} planes, at temperatures of 0 and 300 K, and in configurations with 0 wt.% and 5 wt.% W. The importance of vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document} on deformation was established.
引用
收藏
页码:327 / 336
页数:10
相关论文
共 50 条
  • [21] Explainable machine learning using real, synthetic and augmented fire tests to predict fire resistance and spalling of RC columns
    Naser, M. Z.
    Kodur, V. K.
    ENGINEERING STRUCTURES, 2022, 253
  • [22] Quality Control of Thermally Modified Western Hemlock Wood Using Near-Infrared Spectroscopy and Explainable Machine Learning
    Nasir, Vahid
    Schimleck, Laurence
    Abdoli, Farshid
    Rashidi, Maria
    Sassani, Farrokh
    Avramidis, Stavros
    POLYMERS, 2023, 15 (20)
  • [23] Machine learning approach for GNSS geodetic velocity estimation
    Ozarpaci, Seda
    Kilic, Batuhan
    Bayrak, Onur Can
    Taskiran, Murat
    Dogan, Ugur
    Floyd, Michael
    GPS SOLUTIONS, 2024, 28 (02)
  • [24] Understanding overlay signatures using machine learning on non-lithography context information
    Overcast, Marshall
    Mellegaard, Corey
    Daniel, David
    Habets, Boris
    Erley, Georg
    Guhlemann, Steffen
    Thrun, Xaver
    Buhl, Stefan
    Tottewitz, Steven
    METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXXII, 2018, 10585
  • [25] Non-linear Phillips Curve for India: Evidence from Explainable Machine Learning
    Pratap, Bhanu
    Pawar, Amit
    Sengupta, Shovon
    COMPUTATIONAL ECONOMICS, 2025,
  • [26] Machine Learning of Dislocation-Induced Stress Fields and Interaction Forces
    Rafiei, Mohammad H.
    Gu, Yejun
    El-Awady, Jaafar A.
    JOM, 2020, 72 (12) : 4380 - 4392
  • [27] Explainable machine learning for predicting stomatal conductance across multiple plant functional types
    Gaur, Srishti
    Drewry, Darren T.
    AGRICULTURAL AND FOREST METEOROLOGY, 2024, 350
  • [28] Exploring spatiotemporal patterns of algal cell density in lake Dianchi with explainable machine learning
    Tao, Yiwen
    Ren, Jingli
    Zhu, Huaiping
    Li, Jian
    Cui, Hao
    ENVIRONMENTAL POLLUTION, 2024, 356
  • [29] Towards physics-informed explainable machine learning and causal models for materials research
    Ghosh, Ayana
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 233
  • [30] New insights into hydrogen uptake on porous carbon materials via explainable machine learning
    Kusdhany, Muhammad Irfan Maulana
    Lyth, Stephen Matthew
    CARBON, 2021, 179 : 190 - 201