Understanding dislocation velocity in TaW using explainable machine learning

被引:1
作者
Kedharnath, A. [1 ,2 ]
Kapoor, Rajeev [1 ,2 ]
Sarkar, Apu [1 ,2 ]
机构
[1] Bhabha Atom Res Ctr, Mech Met Div, Mumbai 400085, India
[2] Homi Bhabha Natl Inst, Div Engn Sci, Mumbai 400094, India
关键词
Dislocation; Slip planes {110} {112} {123}; Tungsten effect; Temperature; Resolved shear stress; SIMULATION; TANTALUM; DYNAMICS;
D O I
10.1007/s42864-024-00306-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present work calculated the velocity of edge dislocations in the Ta-W system using molecular dynamics (MD) simulations and through machine learning (ML), identified the key parameters influencing the velocity. To achieve this, MD simulations were conducted at various values of the extrinsic parameters-temperatures and applied stresses (tau app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau }_{\text{app}}$$\end{document}), and the intrinsic variables-slip systems and alloying contents of tungsten in tantalum. Configurations containing edge dislocations on {110}/{112}/{123} planes were employed, and dislocation velocities were subsequently estimated. The MD results were processed using ML models, specifically extreme gradient boosting and SHapley Additive exPlanations (SHAP). SHAP analysis identified tau app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau }_{\text{app}}$$\end{document} as the most influencing parameter affecting velocity, followed by slip plane, temperature, and W addition. SHAP estimated the base velocity value (vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document}) to be 1376 m<middle dot>s-1. vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document} was calculated by training SHAP on a parameter-less model. vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document} could be increased by applying tau app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau }_{\text{app}}$$\end{document} of at least 1 GPa, through slipping on the {112} and {123} planes, at temperatures of 0 and 300 K, and in configurations with 0 wt.% and 5 wt.% W. The importance of vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document} on deformation was established.
引用
收藏
页码:327 / 336
页数:10
相关论文
共 50 条
[21]   Using Machine Learning to Construct Velocity Fields from OH-PLIF Images [J].
Barwey, Shivam ;
Hassanaly, Malik ;
Raman, Venkat ;
Steinberg, Adam .
COMBUSTION SCIENCE AND TECHNOLOGY, 2022, 194 (01) :93-116
[22]   Understanding overlay signatures using machine learning on non-lithography context information [J].
Overcast, Marshall ;
Mellegaard, Corey ;
Daniel, David ;
Habets, Boris ;
Erley, Georg ;
Guhlemann, Steffen ;
Thrun, Xaver ;
Buhl, Stefan ;
Tottewitz, Steven .
METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXXII, 2018, 10585
[23]   Quality Control of Thermally Modified Western Hemlock Wood Using Near-Infrared Spectroscopy and Explainable Machine Learning [J].
Nasir, Vahid ;
Schimleck, Laurence ;
Abdoli, Farshid ;
Rashidi, Maria ;
Sassani, Farrokh ;
Avramidis, Stavros .
POLYMERS, 2023, 15 (20)
[24]   Machine learning approach for GNSS geodetic velocity estimation [J].
Ozarpaci, Seda ;
Kilic, Batuhan ;
Bayrak, Onur Can ;
Taskiran, Murat ;
Dogan, Ugur ;
Floyd, Michael .
GPS SOLUTIONS, 2024, 28 (02)
[25]   Explainable machine learning using real, synthetic and augmented fire tests to predict fire resistance and spalling of RC columns [J].
Naser, M. Z. ;
Kodur, V. K. .
ENGINEERING STRUCTURES, 2022, 253
[26]   Machine Learning of Dislocation-Induced Stress Fields and Interaction Forces [J].
Rafiei, Mohammad H. ;
Gu, Yejun ;
El-Awady, Jaafar A. .
JOM, 2020, 72 (12) :4380-4392
[27]   Data-driven modeling of dislocation mobility from atomistics using physics-informed machine learning [J].
Tian, Yifeng ;
Bagchi, Soumendu ;
Myhill, Liam ;
Po, Giacomo ;
Martinez, Enrique ;
Lin, Yen Ting ;
Mathew, Nithin ;
Perez, Danny .
NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
[28]   Towards physics-informed explainable machine learning and causal models for materials research [J].
Ghosh, Ayana .
COMPUTATIONAL MATERIALS SCIENCE, 2024, 233
[29]   Non-linear Phillips Curve for India: Evidence from Explainable Machine Learning [J].
Pratap, Bhanu ;
Pawar, Amit ;
Sengupta, Shovon .
COMPUTATIONAL ECONOMICS, 2025,
[30]   Explainable Machine Learning Insights into Wetland Dynamics and Carbon Storage in the Irtysh River Basin [J].
Luo, Kaiyue ;
Samat, Alim ;
van de Voorde, Tim ;
Jiang, Weiguo ;
Abuduwaili, Jilili .
EARTH SYSTEMS AND ENVIRONMENT, 2025,