Understanding dislocation velocity in TaW using explainable machine learning

被引:0
作者
Kedharnath, A. [1 ,2 ]
Kapoor, Rajeev [1 ,2 ]
Sarkar, Apu [1 ,2 ]
机构
[1] Bhabha Atom Res Ctr, Mech Met Div, Mumbai 400085, India
[2] Homi Bhabha Natl Inst, Div Engn Sci, Mumbai 400094, India
来源
TUNGSTEN | 2024年
关键词
Dislocation; Slip planes {110} {112} {123}; Tungsten effect; Temperature; Resolved shear stress; SIMULATION; TANTALUM; DYNAMICS;
D O I
10.1007/s42864-024-00306-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present work calculated the velocity of edge dislocations in the Ta-W system using molecular dynamics (MD) simulations and through machine learning (ML), identified the key parameters influencing the velocity. To achieve this, MD simulations were conducted at various values of the extrinsic parameters-temperatures and applied stresses (tau app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau }_{\text{app}}$$\end{document}), and the intrinsic variables-slip systems and alloying contents of tungsten in tantalum. Configurations containing edge dislocations on {110}/{112}/{123} planes were employed, and dislocation velocities were subsequently estimated. The MD results were processed using ML models, specifically extreme gradient boosting and SHapley Additive exPlanations (SHAP). SHAP analysis identified tau app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau }_{\text{app}}$$\end{document} as the most influencing parameter affecting velocity, followed by slip plane, temperature, and W addition. SHAP estimated the base velocity value (vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document}) to be 1376 m<middle dot>s-1. vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document} was calculated by training SHAP on a parameter-less model. vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document} could be increased by applying tau app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau }_{\text{app}}$$\end{document} of at least 1 GPa, through slipping on the {112} and {123} planes, at temperatures of 0 and 300 K, and in configurations with 0 wt.% and 5 wt.% W. The importance of vb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}_{\text{b}}$$\end{document} on deformation was established.
引用
收藏
页码:327 / 336
页数:10
相关论文
共 50 条
  • [1] Predictive understanding of the surface tension and velocity of sound in ionic liquids using machine learning
    Mohan, Mood
    Smith, Micholas Dean
    Demerdash, Omar
    Kidder, Michelle K.
    Smith, Jeremy C.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (21)
  • [2] From Explainable AI to Explainable Simulation: Using Machine Learning and XAI to understand System Robustness
    Feldkamp, Niclas
    Strassburger, Steffen
    [J]. PROCEEDINGS OF THE 2023 ACM SIGSIM INTERNATIONAL CONFERENCE ON PRINCIPLES OF ADVANCED DISCRETE SIMULATION, ACMSIGSIM-PADS 2023, 2023, : 96 - 106
  • [3] Prediction of environmental factors responsible for chlorophyll a-induced hypereutrophy using explainable machine learning
    Kruk, Marek
    [J]. ECOLOGICAL INFORMATICS, 2023, 75
  • [4] Review of explainable machine learning for anaerobic digestion
    Gupta, Rohit
    Zhang, Le
    Hou, Jiayi
    Zhang, Zhikai
    Liu, Hongtao
    You, Siming
    Ok, Yong Sik
    Li, Wangliang
    [J]. BIORESOURCE TECHNOLOGY, 2023, 369
  • [5] Machine Learning-Based Classification of Dislocation Microstructures
    Steinberger, Dominik
    Song, Hengxu
    Sandfeld, Stefan
    [J]. FRONTIERS IN MATERIALS, 2019, 6
  • [6] Investigation on the Plastic Strain Dependence of Dislocation Velocity Using Dislocation Velocity-Stress Exponent and Dislocation Velocity Coefficient
    Ueno, Kota
    Murasawa, Kodai
    Suzuki, Yurina
    Takamura, Masato
    Hama, Takayuki
    Hakoyama, Tomoyuki
    Suzuki, Shinsuke
    [J]. JOURNAL OF THE JAPAN INSTITUTE OF METALS AND MATERIALS, 2020, 84 (10) : 326 - 333
  • [7] Interpretable and Explainable Machine Learning for Ultrasonic Defect Sizing
    Pyle, Richard J.
    Hughes, Robert R.
    Wilcox, Paul D.
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2023, 70 (04) : 277 - 290
  • [8] Unraveling the Impact of Land Cover Changes on Climate Using Machine Learning and Explainable Artificial Intelligence
    Kolevatova, Anastasiia
    Riegler, Michael A.
    Cherubini, Francesco
    Hu, Xiangping
    Hammer, Hugo L.
    [J]. BIG DATA AND COGNITIVE COMPUTING, 2021, 5 (04)
  • [9] Prediction of narrow HT-SMA thermal hysteresis behaviour using explainable machine learning
    Machaka, Ronald
    Radingoana, Precious M.
    [J]. MATERIALS TODAY COMMUNICATIONS, 2023, 35
  • [10] Explainable machine learning to uncover hydrogen diffusion mechanism in clinopyroxene
    Li, Anzhou
    Wu, Sensen
    Chen, Huan
    Du, Zhenhong
    Xia, Qunke
    [J]. CHEMICAL GEOLOGY, 2023, 641