共 59 条
- [41] Zeng K., Wang Y., Mao J., Et al., Deep stereo matching with hysteresis attention and supervised cost volume construction, IEEE Trans Image Process, 31, pp. 812-822, (2021)
- [42] Tete X., Mannat S., Eric M., Et al., Early Convolutions Help Transformers See Better, Conf Neural Inf Process Sys, 2021, pp. 30392-30400, (2021)
- [43] Jia X., Zhu C., Li M., Zhou W., T, LLVIP: A Visible-Infrared Paired Dataset for Low-Light Vision. 2021 IEEE/CVF Int Conf. Comp Vis Workshops (ICCVW), Montreal, BC, Canada, 2021, pp. 3489-3497, (2021)
- [44] Alexander T., Maarten H., Tno Image Fusion Dataset, (2014)
- [45] Liu J., Fan X., Huang Z., Et al., Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection, Computer Vis Pattern Reco, pp. 5792-5801, (2022)
- [46] Tang L., Yuan J., Ma J., Et al., Piafusion: A progressive infrared and visible image fusion network based on illumination aware, Inf Fusion, 83-84, pp. 79-92, (2022)
- [47] Xu H., Ma J., Le Z., Et al., Fusiondn: a unified densely connected network for image fusion, AAAI Conf Artif Intel, 34, pp. 12484-12491, (2020)
- [48] Bavirisetti D., Dhuli R., Fusion of infrared and visible sensor images based on anisotropic diffusion and karhunen-loeve transform, IEEE Sensors J, 16, 1, pp. 203-209, (2016)
- [49] Ma J., Zhou Z., Wang B., Et al., Infrared and visible image fusion based on visual saliency map and weighted least square optimization, Infrared Phy Technol, 82, pp. 8-17, (2017)
- [50] Naidu V., Image fusion technique using multi-resolution singular value decomposition, Defence Sci J, 61, 5, pp. 479-484, (2011)