Probing spectral features of quantum many-body systems with quantum simulators

被引:5
作者
Sun, Jinzhao [1 ,2 ]
Vilchez-Estevez, Lucia [1 ]
Vedral, Vlatko [1 ]
Boothroyd, Andrew T. [1 ]
Kim, M. S. [2 ]
机构
[1] UNIV OXFORD, Clarendon Lab, Parks Rd, OXFORD, England
[2] Imperial Coll London, Blackett Lab, London, England
基金
英国工程与自然科学研究理事会; “创新英国”项目; 新加坡国家研究基金会;
关键词
SPECTROSCOPY; PROPAGATION;
D O I
10.1038/s41467-025-55955-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The efficient probing of spectral features is important for characterising and understanding the structure and dynamics of quantum materials. In this work, we establish a framework for probing the excitation spectrum of quantum many-body systems with quantum simulators. Our approach effectively realises a spectral detector by processing the dynamics of observables with time intervals drawn from a defined probability distribution, which only requires native time evolution governed by the Hamiltonian without ancilla. The critical element of our method is the engineered emergence of frequency resonance such that the excitation spectrum can be probed. We show that the time complexity for transition energy estimation has a logarithmic dependence on simulation accuracy and how such observation can be guaranteed in certain many-body systems. We discuss the noise robustness of our spectroscopic method and show that the total running time maintains polynomial dependence on accuracy in the presence of device noise. We further numerically test the error dependence and the scalability of our method for lattice models. We present simulation results for the spectral features of typical quantum systems, either gapped or gapless, including quantum spins, fermions and bosons. We demonstrate how excitation spectra of spin-lattice models can be probed experimentally with IBM quantum devices.
引用
收藏
页数:13
相关论文
共 68 条
[1]  
Als-Nielsen J.McMorrow D., 2011, Elements of modern X-ray physics, DOI [DOI 10.1002/9781119998365.CH1, 10.1002/9781119998365]
[2]   Dynamical structure factors of dynamical quantum simulators [J].
Baez, Maria Laura ;
Goihl, Marcel ;
Haferkamp, Jonas ;
Bermejo-Vega, Juani ;
Gluza, Marek ;
Eisert, Jens .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (42) :26123-26134
[3]   Noisy intermediate-scale quantum algorithms [J].
Bharti, Kishor ;
Cervera-Lierta, Alba ;
Kyaw, Thi Ha ;
Haug, Tobias ;
Alperin-Lea, Sumner ;
Anand, Abhinav ;
Degroote, Matthias ;
Heimonen, Hermanni ;
Kottmann, Jakob S. ;
Menke, Tim ;
Mok, Wai-Keong ;
Sim, Sukin ;
Kwek, Leong-Chuan ;
Aspuru-Guzik, Alan .
REVIEWS OF MODERN PHYSICS, 2022, 94 (01)
[4]   Strong quenches in the one-dimensional Fermi-Hubbard model [J].
Bleicker, Philip ;
Uhrig, Goetz S. .
PHYSICAL REVIEW A, 2018, 98 (03)
[5]   Spectral function of the Holstein polaron at finite temperature [J].
Bonca, J. ;
Trugman, S. A. ;
Berciu, M. .
PHYSICAL REVIEW B, 2019, 100 (09)
[6]  
Boothroyd AndrewT., 2020, PRINCIPLES NEUTRON S, P512, DOI DOI 10.1093/OSO/9780198862314.001.0001
[7]  
Chan HHS, 2024, Arxiv, DOI arXiv:2212.11036
[8]   Quantum hardware simulating four-dimensional inelastic neutron scattering [J].
Chiesa, A. ;
Tacchino, F. ;
Grossi, M. ;
Santini, P. ;
Tavernelli, I. ;
Gerace, D. ;
Carretta, S. .
NATURE PHYSICS, 2019, 15 (05) :455-+
[9]   Quantum simulation and spectroscopy of entanglement Hamiltonians [J].
Dalmonte, M. ;
Vermersch, B. ;
Zoller, P. .
NATURE PHYSICS, 2018, 14 (08) :827-+
[10]   Random Quantum Circuits Transform Local Noise into Global White Noise [J].
Dalzell, Alexander M. ;
Hunter-Jones, Nicholas ;
Brandao, Fernando G. S. L. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (03)