Magnetoresistance in Co/Cu magnetic metallic superlattices: influence of copper layer thickness at low temperatures

被引:0
作者
Elsafi, Bassem [1 ]
机构
[1] Univ Sfax, Natl Sch Elect & Telecommun Sfax, Sfax 3018, Tunisia
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2025年 / 131卷 / 04期
关键词
Co/Cu superlattices; Magnetoresistance; Electrical resistivity; Cu layer thickness; Temperature dependence; GIANT MAGNETORESISTANCE; FILMS; CONDUCTIVITY; NI/CU;
D O I
10.1007/s00339-025-08356-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This research examines the magnetoresistance (MR) behaviour of Co/Cu superlattices with a fixed Co layer thickness of 20 & Aring;, emphasizing the effect of varying Cu layer thickness on MR across a wide temperature range of 4.2-300 K. The study specifically explores how different Cu layer thicknesses and interface compositions impact spin-dependent electron scattering, which in turn affects the MR ratio. The theoretical framework suggests that the MR is highly sensitive to changes in Cu layer thickness due to the modification of electron scattering mechanisms at the Co/Cu interfaces. Through numerical simulations, it is observed that the MR decreases significantly as the Cu layer thickness increases from 5 & Aring; to 150 & Aring;, particularly at lower temperatures. The agreement between theoretical predictions and experimental measurements underscores the importance of Cu layer thickness and interface and surface integrity in achieving optimal MR performance in electrodeposited Co/Cu multilayers.
引用
收藏
页数:8
相关论文
共 41 条
  • [1] Yang S.-H., Ryu K.-S., Parkin S., Domain-wall velocities of up to 750 m s(−1) driven by exchange-coupling torque in synthetic antiferromagnets, Nat. Nanotechnol, 10, pp. 221-226, (2015)
  • [2] Alamdar M., Et al., Domain wall-magnetic tunnel junction spin-orbit torque devices and circuits for in-memory computing, Appl. Phys. Lett, 118, (2021)
  • [3] Chumak O., Et al., Magnetoelastic interactions and magnetic damping in Co<sub>2</sub> Fe<sub>0.4</sub> Mn<sub>0.6</sub> Si and Co <sub>2</sub> FeGa<sub>0.5</sub> Ge<sub>0.5</sub> Heusler alloys thin films for spintronic applications, Sci. Rep, 11, pp. 1-12, (2021)
  • [4] Matthiesen M., Et al., Temperature dependent inverse spin Hall effect in Co/Pt spintronic emitters, Appl. Phys. Lett, 116, (2020)
  • [5] Wu G., Et al., Temperature-dependent magnetization dynamics in nanoscale Cu (t Cu)/[Co/Ni] N perpendicular multilayers: implications for spintronic applications, ACS Appl. Nano Mater, 3, pp. 11555-11561, (2020)
  • [6] Palomino A., Et al., Evaluating critical metals contained in spintronic memory with a particular focus on Pt substitution for improved sustainability, Sustain. Mater. Tech, 28, (2021)
  • [7] Fan S., Zhou C., Xu H., Xu J., Wen H.M., Xiao J.Q., Hu J., A novel strategy to improve giant magnetoresistance effect of Co/Cu multilayered nanowires arrays, J. Alloys Compd, 910, (2022)
  • [8] Baibich M.N., Broto J.M., Fert A., Van Dau F., Nguyen F., Petroff P., Eitenne G., Creuzet A., Friederich J.C., Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett, 61, (1988)
  • [9] Thomson W., On the electro-dynamic qualities of metals: effects of magnetization on the electric conductivity of nickel and of iron, Proc. R. Soc. Lond, 8, pp. 546-550, (1857)
  • [10] Hussein M.M., Saafan S.A., Abosheiasha H.F., Zhou D., Tishkevich D.I., Abmiotka N.V., Trukhanova E.L., Trukhanov A.V., Trukhanov S.V., Hossain M.K., Darwish M.A., Préparation, propriétés structurelles, magnétiques et électriques CA des nanoparticules de CoFe<sub>2</sub>O<sub>4</sub> synthétisées et de ses composites PVDF, Mater. Chem. Phys, 317, (2024)