Enhanced object detection in remote sensing images by applying metaheuristic and hybrid metaheuristic optimizers to YOLOv7 and YOLOv8

被引:0
|
作者
Elgamily, Khaled Mohammed [1 ]
Mohamed, M. A. [1 ]
Abou-Taleb, Ahmed Mohamed [1 ]
Ata, Mohamed Maher [2 ]
机构
[1] Mansoura Univ, Fac Engn, Dept Elect & Commun Engn, Mansoura 35516, Egypt
[2] Zewail City Sci & Technol, Sch Computat Sci & Artificial Intelligence CSAI, 6th October City 12578, Giza, Egypt
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Object detection; YOLOv7; YOLOv8; Hybrid metaheuristic optimization; Optimization techniques; Remote sensing images; OPTIMIZATION; ALGORITHM;
D O I
10.1038/s41598-025-89124-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Developments in object detection algorithms are critical for urban planning, environmental monitoring, surveillance, and many other applications. The primary objective of the article was to improve detection precision and model efficiency. The paper compared the performance of six different metaheuristic optimization algorithms including Gray Wolf Optimizer (GWO), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Remora Optimization Algorithm (ROA), Aquila Optimizer (AO), and Hybrid PSO-GWO (HPSGWO) combined with YOLOv7 and YOLOv8. The study included two distinct remote sensing datasets, RSOD and VHR-10. Many performance measures as precision, recall, and mean average precision (mAP) were used during the training, validation, and testing processes, as well as the fit score. The results show significant improvements in both YOLO variants following optimization using these strategies. The GWO-optimized YOLOv7 with 0.96 mAP 50, and 0.69 mAP 50:95, and the HPSGWO-optimized YOLOv8 with 0.97 mAP 50, and 0.72 mAP 50:95 had the best performance in the RSOD dataset. Similarly, the GWO-optimized versions of YOLOv7 and YOLOv8 had the best performance on the VHR-10 dataset with 0.87 mAP 50, and 0.58 mAP 50:95 for YOLOv7 and with 0.99 mAP 50, and 0.69 mAP 50:95 for YOLOv8, indicating greater performance. The findings supported the usefulness of metaheuristic optimization in increasing the precision and recall rates of YOLO algorithms and demonstrated major significance in improving object recognition tasks in remote sensing imaging, opening up a viable route for applications in a variety of disciplines.
引用
收藏
页数:31
相关论文
共 50 条
  • [41] A Remote Sensing Image Target Detection Algorithm Based on Improved YOLOv8
    Wang, Haoyu
    Yang, Haitao
    Chen, Hang
    Wang, Jinyu
    Zhou, Xixuan
    Xu, Yifan
    APPLIED SCIENCES-BASEL, 2024, 14 (04):
  • [42] YOLOv7 Model for Small Object Handling in Maritime Images
    Pobar, Miran
    CENTRAL EUROPEAN CONFERENCE ON INFORMATION AND INTELLIGENT SYSTEMS, CECIIS, 2023, : 391 - 397
  • [43] LSOD-YOLOv8s: A Lightweight Small Object Detection Model Based on YOLOv8 for UAV Aerial Images
    Li, Huikai
    Wu, Jie
    ENGINEERING LETTERS, 2024, 32 (11) : 2073 - 2082
  • [44] Weed detection in cotton farming by YOLOv5 and YOLOv8 object detectors
    Kanade, Aditya Kamalakar
    Potdar, Milind P.
    Kumar, Aravinda
    Balol, Gurupada
    Shivashankar, K.
    EUROPEAN JOURNAL OF AGRONOMY, 2025, 168
  • [45] Enhanced YOLOv7 for Improved Underwater Target Detection
    Lu, Daohua
    Yi, Junxin
    Wang, Jia
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (07)
  • [46] Wafer surface defect detection with enhanced YOLOv7
    Tang, Chen
    Yin, Lijie
    Xie, Yongchao
    International Journal of Information and Communication Technology, 2024, 25 (06) : 1 - 17
  • [47] Improved YOLOv5 Object Detection Algorithm for Remote Sensing Images
    Yang, Chen
    She, Lu
    Yang, Lu
    Feng, Zixian
    Computer Engineering and Applications, 2023, 59 (15) : 76 - 86
  • [48] SerpensGate-YOLOv8: an enhanced YOLOv8 model for accurate plant disease detection
    Miao, Yongzheng
    Meng, Wei
    Zhou, Xiaoyu
    FRONTIERS IN PLANT SCIENCE, 2025, 15
  • [49] SOD-YOLOv10: Small Object Detection in Remote Sensing Images Based on YOLOv10
    Sun, Hui
    Yao, Guangzhen
    Zhu, Sandong
    Zhang, Long
    Xu, Hui
    Kong, Jun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [50] PF-YOLO: An Improved YOLOv8 for Small Object Detection in Fisheye Images
    Cheng Zhang
    Cheng Xu
    Hongzhe Liu
    Journal of Beijing Institute of Technology, 2025, 34 (01) : 57 - 70