Weighted Least ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _p$$\end{document} Approximation on Compact Riemannian Manifolds

被引:0
作者
Jiansong Li [1 ]
Yun Ling [1 ]
Jiaxin Geng [1 ]
Heping Wang [1 ]
机构
[1] Capital Normal University,School of Mathematical Sciences
关键词
Marcinkiewicz–Zygmund inequality; Weighted least ; Least squares quadrature; Sobolev and Beov spaces; Sampling numbers; Optimal quadratures; 41A17; 41A55; 41A81; 65D15; 65D30; 65D32;
D O I
10.1007/s00041-024-10114-x
中图分类号
学科分类号
摘要
Given a sequence of Marcinkiewicz–Zygmund inequalities in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} on a compact space, Gröchenig (J Approx Theory 257:105455, 2020) discussed weighted least squares approximation and least squares quadrature. Inspired by this work, for all 1≤p≤∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p\le \infty $$\end{document}, we develop weighted least ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _p$$\end{document} approximation induced by a sequence of Marcinkiewicz–Zygmund inequalities in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p$$\end{document} on a compact smooth Riemannian manifold M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb M$$\end{document} with normalized Riemannian measure (typical examples are the torus and the sphere). In this paper we derive corresponding approximation theorems with the error measured in Lq,1≤q≤∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_q,\,1\le q\le \infty $$\end{document}, and least quadrature errors for both Sobolev spaces Hpr(M),r>d/p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_p^r(\mathbb M), \, r>d/p$$\end{document} generated by eigenfunctions associated with the Laplace-Beltrami operator and Besov spaces Bp,γr(M),0<γ≤∞,r>d/p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{p,\gamma }^r(\mathbb M),\, 0<\gamma \le \infty ,\, r>d/p $$\end{document} defined by best ”polynomial” approximation. Finally, we discuss the optimality of the obtained results by giving sharp estimates of sampling numbers and optimal quadrature errors for the aforementioned spaces.
引用
收藏
相关论文
共 85 条
[81]  
Wang H(undefined)undefined undefined undefined undefined-undefined
[82]  
Wang H(undefined)undefined undefined undefined undefined-undefined
[83]  
Sloan IH(undefined)undefined undefined undefined undefined-undefined
[84]  
Wang H(undefined)undefined undefined undefined undefined-undefined
[85]  
Wang K(undefined)undefined undefined undefined undefined-undefined