Weighted Least ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _p$$\end{document} Approximation on Compact Riemannian Manifolds

被引:0
作者
Jiansong Li [1 ]
Yun Ling [1 ]
Jiaxin Geng [1 ]
Heping Wang [1 ]
机构
[1] Capital Normal University,School of Mathematical Sciences
关键词
Marcinkiewicz–Zygmund inequality; Weighted least ; Least squares quadrature; Sobolev and Beov spaces; Sampling numbers; Optimal quadratures; 41A17; 41A55; 41A81; 65D15; 65D30; 65D32;
D O I
10.1007/s00041-024-10114-x
中图分类号
学科分类号
摘要
Given a sequence of Marcinkiewicz–Zygmund inequalities in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} on a compact space, Gröchenig (J Approx Theory 257:105455, 2020) discussed weighted least squares approximation and least squares quadrature. Inspired by this work, for all 1≤p≤∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p\le \infty $$\end{document}, we develop weighted least ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _p$$\end{document} approximation induced by a sequence of Marcinkiewicz–Zygmund inequalities in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p$$\end{document} on a compact smooth Riemannian manifold M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb M$$\end{document} with normalized Riemannian measure (typical examples are the torus and the sphere). In this paper we derive corresponding approximation theorems with the error measured in Lq,1≤q≤∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_q,\,1\le q\le \infty $$\end{document}, and least quadrature errors for both Sobolev spaces Hpr(M),r>d/p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_p^r(\mathbb M), \, r>d/p$$\end{document} generated by eigenfunctions associated with the Laplace-Beltrami operator and Besov spaces Bp,γr(M),0<γ≤∞,r>d/p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{p,\gamma }^r(\mathbb M),\, 0<\gamma \le \infty ,\, r>d/p $$\end{document} defined by best ”polynomial” approximation. Finally, we discuss the optimality of the obtained results by giving sharp estimates of sampling numbers and optimal quadrature errors for the aforementioned spaces.
引用
收藏
相关论文
共 85 条
[1]  
Antezana J(2021)Necessary conditions for interpolation by multivariate polynomials Comput. Methods Funct. Theory 21 831-849
[2]  
Marzo J(2018)Sampling of real multivariate polynomials and pluripotential theory Am. J. Math. 140 789-820
[3]  
Ortega-Cerdá J(2014)Quadrature rules and distribution of points on manifolds Ann. Sc. Norm. Super. Pisa Cl. Sci. XIII 889-923
[4]  
Berman R(2019)Discrepancy and numerical integration on metric measure spaces J. Geom. Anal. 29 328-369
[5]  
Ortega-Cerdá J(2007)Numerical integration over spheres of arbitrary dimension Constr. Approx. 25 41-71
[6]  
Brandolini L(2014)QMC designs: optimal order quasi Monte Carlo integration schemes on the sphere Math. Comput. 83 2821-2851
[7]  
Choirat C(2015)Covering of spheres by spherical caps and worst-case error for equal weight cubature in Sobolev spaces J. Math. Anal. Appl. 431 782-811
[8]  
Colzani L(1929)Sur la determination dún systeme orthogonal complet dans un espace de Riemann symetrique clos Circ. Mat. Palermo 53 217-252
[9]  
Gigante G(2013)Optimal cubature formulas in weighted Besov spaces with Constr. Approx. 37 167-194
[10]  
Seri R(2005) weights on multivariate domains J. Complex. 21 294-313