On the resolution of the Diophantine equation Un+Um=xq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_n + U_m = x^q$$\end{document}On the resolution of the Diophantine...P. K. Bhoi et al.

被引:0
作者
P. K. Bhoi [1 ]
S. S. Rout [2 ]
G. K. Panda [1 ]
机构
[1] National Institute of Technology,Department of Mathematics
[2] National Institute of Technology,Department of Mathematics
关键词
Binary recurrence sequence; Lucas sequences; Diophantine equation; Linear forms in logarithms; Primary 11B39; Secondary 11D61; 11J86;
D O I
10.1007/s11139-024-01002-5
中图分类号
学科分类号
摘要
Suppose that (Un)n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(U_{n})_{n \ge 0}$$\end{document} is a binary recurrence sequence and has a dominant root α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} with α>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >1$$\end{document} and the discriminant D is square-free. In this paper, we study the Diophantine equation Un+Um=xq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_n + U_m = x^q$$\end{document} in integers n≥m≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge m \ge 0$$\end{document}, x≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \ge 2$$\end{document}, and q≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \ge 2$$\end{document}. Firstly, we show that there are only finitely many of them for a fixed x using linear forms in logarithms. Secondly, we show that there are only finitely many solutions in (n, m, x, q) with q,x≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q, x\ge 2$$\end{document} under the assumption of the abc-conjecture. To prove this, we use several classical results like Schmidt subspace theorem, a fundamental theorem on linear equations in S-units and Siegel’s theorem concerning the finiteness of the number of solutions of a superelliptic equation.
引用
收藏
相关论文
empty
未找到相关数据