Equilibria and stability in the restricted (n+1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(n+1)$\end{document}-body problem with logarithm potential
被引:0
作者:
A.-M. Muscaş
论文数: 0引用数: 0
h-index: 0
机构:
University of Oradea,The Center for Doctoral University StudiesUniversity of Oradea,The Center for Doctoral University Studies
A.-M. Muscaş
[1
]
Daniel Paşca
论文数: 0引用数: 0
h-index: 0
机构:
University of Oradea,Department of Mathematics and InformaticsUniversity of Oradea,The Center for Doctoral University Studies
Daniel Paşca
[2
]
论文数: 引用数:
h-index:
机构:
Cristina Stoica
[3
]
机构:
[1] University of Oradea,The Center for Doctoral University Studies
[2] University of Oradea,Department of Mathematics and Informatics
[3] Wilfrid Laurier University,Department of Mathematics
We study the existence and stability of equilibria in the regular n-gon restricted (n+1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(n+1)$\end{document}-body problem with logarithm potential. We determine two classes of equilibria: “infinitesimal-Eulerian” situated along lines joining the n-gon centre with a vertex (i.e. along the radii), and “infinitesimal-Lagrangian” situated on the perpendicular bisectors of the n-gon sides. The infinitesimal-Eulerian equilibria are all positioned outside the primaries n-gon and are unstable. The infinitesimal-Lagrangian equilibria appear in two families: an unstable family in the interior of the primaries’ polygon, and a linearly stable family in the exterior. We also prove the existence of an equilibrium at the centre of the polygon that is unstable.