Equilibria and stability in the restricted (n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(n+1)$\end{document}-body problem with logarithm potential

被引:0
作者
A.-M. Muscaş [1 ]
Daniel Paşca [2 ]
Cristina Stoica [3 ]
机构
[1] University of Oradea,The Center for Doctoral University Studies
[2] University of Oradea,Department of Mathematics and Informatics
[3] Wilfrid Laurier University,Department of Mathematics
关键词
Logarithm potential; Restricted ; -body problem; Regular n-gon; Equilibria; Stability;
D O I
10.1007/s10509-025-04415-w
中图分类号
学科分类号
摘要
We study the existence and stability of equilibria in the regular n-gon restricted (n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(n+1)$\end{document}-body problem with logarithm potential. We determine two classes of equilibria: “infinitesimal-Eulerian” situated along lines joining the n-gon centre with a vertex (i.e. along the radii), and “infinitesimal-Lagrangian” situated on the perpendicular bisectors of the n-gon sides. The infinitesimal-Eulerian equilibria are all positioned outside the primaries n-gon and are unstable. The infinitesimal-Lagrangian equilibria appear in two families: an unstable family in the interior of the primaries’ polygon, and a linearly stable family in the exterior. We also prove the existence of an equilibrium at the centre of the polygon that is unstable.
引用
收藏
相关论文
empty
未找到相关数据