Evaluation of genomic and phenomic prediction for application in apple breeding

被引:0
作者
Jung, Michaela [1 ,2 ]
Hodel, Marius [1 ]
Knauf, Andrea [1 ,2 ]
Kupper, Daniela [1 ,2 ]
Neuditschko, Markus [3 ]
Buhlmann-Schutz, Simone [1 ]
Studer, Bruno [2 ]
Patocchi, Andrea [1 ]
AL Broggini, Giovanni [2 ]
机构
[1] Agroscope, Mueller Thurgau Str 29, CH-8820 Wadenswil, Switzerland
[2] Swiss Fed Inst Technol, Inst Agr Sci, Mol Plant Breeding, Univ Str 2, CH-8092 Zurich, Switzerland
[3] Agroscope, Rte Tioleyre 4, CH-1725 Posieux, Switzerland
关键词
Genomic selection; Phenomic selection; Malus x domestica; Quantitative traits; Apple REFPOP; TOOL;
D O I
10.1186/s12870-025-06104-w
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
BackgroundApple breeding schemes can be improved by using genomic prediction models to forecast the performance of breeding material. The predictive ability of these models depends on factors like trait genetic architecture, training set size, relatedness of the selected material to the training set, and the validation method used. Alternative genotyping methods such as RADseq and complementary data from near-infrared spectroscopy could help improve the cost-effectiveness of genomic prediction. However, the impact of these factors and alternative approaches on predictive ability beyond experimental populations still need to be investigated. In this study, we evaluated 137 prediction scenarios varying the described factors and alternative approaches, offering recommendations for implementing genomic selection in apple breeding.ResultsOur results show that extending the training set with germplasm related to the predicted breeding material can improve average predictive ability across eleven studied traits by up to 0.08. The study emphasizes the usefulness of leave-one-family-out cross-validation, reflecting the application of genomic prediction to a new family, although it reduced average predictive ability across traits by up to 0.24 compared to 10-fold cross-validation. Similar average predictive abilities across traits indicate that imputed RADseq data could be a suitable genotyping alternative to SNP array datasets. The best-performing scenario using near-infrared spectroscopy data for phenomic prediction showed a 0.35 decrease in average predictive ability across traits compared to conventional genomic prediction, suggesting that the tested phenomic prediction approach is impractical.ConclusionsExtending the training set using germplasm related with the target breeding material is crucial to improve the predictive ability of genomic prediction in apple. RADseq is a viable alternative to SNP array genotyping, while phenomic prediction is impractical. These findings offer valuable guidance for applying genomic selection in apple breeding, ultimately leading to the development of breeding material with improved quality.
引用
收藏
页数:19
相关论文
共 62 条
[11]   Stacks: an analysis tool set for population genomics [J].
Catchen, Julian ;
Hohenlohe, Paul A. ;
Bassham, Susan ;
Amores, Angel ;
Cresko, William A. .
MOLECULAR ECOLOGY, 2013, 22 (11) :3124-3140
[12]   Combining genetic resources and elite material populations to improve the accuracy of genomic prediction in apple [J].
Cazenave, Xabi ;
Petit, Bernard ;
Lateur, Marc ;
Nybom, Hilde ;
Sedlak, Jiri ;
Tartarini, Stefano ;
Laurens, Francois ;
Durel, Charles-Eric ;
Muranty, Helene .
G3-GENES GENOMES GENETICS, 2022, 12 (03)
[13]   Second-generation PLINK: rising to the challenge of larger and richer datasets [J].
Chang, Christopher C. ;
Chow, Carson C. ;
Tellier, Laurent C. A. M. ;
Vattikuti, Shashaank ;
Purcell, Shaun M. ;
Lee, James J. .
GIGASCIENCE, 2015, 4
[14]   High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development [J].
Daccord, Nicolas ;
Celton, Jean-Marc ;
Linsmith, Gareth ;
Becker, Claude ;
Choisne, Nathalie ;
Schijlen, Elio ;
van de Geest, Henri ;
Bianco, Luca ;
Micheletti, Diego ;
Velasco, Riccardo ;
Di Pierro, Erica Adele ;
Gouzy, Jerome ;
Rees, D. Jasper G. ;
Guerif, Philippe ;
Muranty, Helene ;
Durel, Charles-Eric ;
Laurens, Francois ;
Lespinasse, Yves ;
Gaillard, Sylvain ;
Aubourg, Sebastien ;
Quesneville, Hadi ;
Weigel, Detlef ;
van de Weg, Eric ;
Troggio, Michela ;
Bucher, Etienne .
NATURE GENETICS, 2017, 49 (07) :1099-+
[15]   Twelve years of SAMtools and BCFtools [J].
Danecek, Petr ;
Bonfield, James K. ;
Liddle, Jennifer ;
Marshall, John ;
Ohan, Valeriu ;
Pollard, Martin O. ;
Whitwham, Andrew ;
Keane, Thomas ;
McCarthy, Shane A. ;
Davies, Robert M. ;
Li, Heng .
GIGASCIENCE, 2021, 10 (02)
[16]   The variant call format and VCFtools [J].
Danecek, Petr ;
Auton, Adam ;
Abecasis, Goncalo ;
Albers, Cornelis A. ;
Banks, Eric ;
DePristo, Mark A. ;
Handsaker, Robert E. ;
Lunter, Gerton ;
Marth, Gabor T. ;
Sherry, Stephen T. ;
McVean, Gilean ;
Durbin, Richard .
BIOINFORMATICS, 2011, 27 (15) :2156-2158
[17]  
Dent R, 2012, PLOS ONE, V7, DOI [10.1371/journal.pone.0037135, 10.1371/journal.pone.0036889]
[18]   A high-density, multi-parental SNP genetic map on apple validates a new mapping approach for outcrossing species [J].
Di Pierro, Erica A. ;
Gianfranceschi, Luca ;
Di Guardo, Mario ;
Koehorst-van Putten, Herma J. J. ;
Kruisselbrink, Johannes W. ;
Longhi, Sara ;
Troggio, Michela ;
Bianco, Luca ;
Muranty, Helene ;
Pagliarani, Giulia ;
Tartarini, Stefano ;
Letschka, Thomas ;
Luis, Lidia Lozano ;
Garkava-Gustavsson, Larisa ;
Micheletti, Diego ;
Bink, Marco C. A. M. ;
Voorrips, Roeland E. ;
Aziz, Ebrahimi ;
Velasco, Riccardo ;
Laurens, Francois ;
van de Weg, W. Eric .
HORTICULTURE RESEARCH, 2016, 3
[19]   A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species [J].
Elshire, Robert J. ;
Glaubitz, Jeffrey C. ;
Sun, Qi ;
Poland, Jesse A. ;
Kawamoto, Ken ;
Buckler, Edward S. ;
Mitchell, Sharon E. .
PLOS ONE, 2011, 6 (05)
[20]   Industry-Scale Evaluation of Maize Hybrids Selected for Increased Yield in Drought-Stress Conditions of the US Corn Belt [J].
Gaffney, Jim ;
Schussler, Jeff ;
Loeffler, Carlos ;
Cai, Weiguo ;
Paszkiewicz, Steve ;
Messina, Carlos ;
Groeteke, Jeremy ;
Keaschall, Joe ;
Cooper, Mark .
CROP SCIENCE, 2015, 55 (04) :1608-1618