Comparison of time-to-event machine learning models in predicting biliary complication and mortality rate in liver transplant patients

被引:1
作者
Andishgar, Aref [1 ]
Bazmi, Sina [1 ]
Lankarani, Kamran B. [2 ]
Taghavi, Seyed Alireza [3 ]
Imanieh, Mohammad Hadi [3 ]
Sivandzadeh, Gholamreza [3 ]
Saeian, Samira [3 ]
Dadashpour, Nazanin [3 ]
Shamsaeefar, Alireza [4 ]
Ravankhah, Mahdi [5 ]
Deylami, Hamed Nikoupour [4 ]
Tabrizi, Reza [6 ,7 ]
Imanieh, Mohammad Hossein [3 ]
机构
[1] Fasa Univ Med Sci, USERN Off, Fasa, Iran
[2] Shiraz Univ Med Sci, Inst Heath, Hlth Policy Res Ctr, Shiraz, Iran
[3] Shiraz Univ Med Sci, Gastroenterohepatol Res Ctr, 9th Floor,Mohammad Rasoul Allah Res Tower,Khalili, Shiraz 7193635899, Iran
[4] Shiraz Univ Med Sci, Abu Ali Sina Organ Transplant Ctr, Shiraz, Iran
[5] Shiraz Univ Med Sci, Student Res Comm, Sch Med, Shiraz, Iran
[6] Fasa Univ Med Sci, Noncommunicable Dis Res Ctr, Fasa 7461686688, Iran
[7] Fasa Univ Med Sci, Vali Asr Hosp, Clin Res Dev Unit, Fasa, Iran
关键词
Survival analysis; Machine learning; Liver transplantation; Mortality; Postoperative complications; Biliary complications; INFLAMMATORY-BOWEL-DISEASE; SINGLE-CENTER; SURVIVAL; MANAGEMENT; GRAFT; RECIPIENTS; ALGORITHMS; SELECTION; ISCHEMIA; DONOR;
D O I
10.1038/s41598-025-89570-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Post-Liver transplantation (LT) survival rates stagnate, with biliary complications (BC) as a major cause of death. We analyzed longitudinal data with a median 19-month follow-up. BC was diagnosed with ultrasounds and MRCP. Missing data was imputed using mean and median. Data preprocessing involved feature scaling and one-hot encoding. Survival analysis used filter (Cox-P, Cox-c) and embedded (RSF, LASSO) feature selection methods. Seven survival machine learning algorithms were used: LASSO, Ridge, RSF, E-NET, GBS, C-GBS, and FS-SVM. Model development employed 5-fold cross-validation, random oversampling, and hyperparameter tuning. Random oversampling addressed data imbalance. Optimal hyperparameters were determined based on average C-index. Features importance was assessed using standardized regression coefficients and permutation importance for top models. Stability was evaluated using 5-fold cross-validation standard deviation. Finally, 1799 observations with 40 outcome predictors were included. RSF with Ridge achieved the highest performance (C-index: 0.699) for BC prediction, while RSF with RSF had the highest performance (C-index: 0.784) for mortality prediction. Top BC predictors were LT graft types, IBD in recipients, recipient's BMI, recipient's history of PVT, and previous LT history. For mortality, they were post-transplant AST, creatinine, recipient's age, post-transplant ALT, and tacrolimus consumption. We identified BC and mortality risk factors, improving decision-making and outcomes.
引用
收藏
页数:14
相关论文
共 77 条
[1]   Cyclosporine vs. tacrolimus after liver transplantation for primary sclerosing cholangitis - a propensity score-matched intention-to-treat analysis [J].
Aberg, Fredrik ;
Sallinen, Ville ;
Tuominen, Samuli ;
Adam, Rene ;
Karam, Vincent ;
Mirza, Darius ;
Heneghan, Michael A. ;
Line, Pal-Dag ;
Bennet, William ;
Ericzon, Bo-Goran ;
Grat, Michal ;
Lodge, Peter ;
Rasmussen, Allan ;
Schmelzle, Moritz ;
Thorburn, Douglas ;
Fondevila, Constantino ;
Helantera, Ilkka ;
Nordin, Arno .
JOURNAL OF HEPATOLOGY, 2024, 80 (01) :99-108
[2]   An Insider Data Leakage Detection Using One-Hot Encoding, Synthetic Minority Oversampling and Machine Learning Techniques [J].
Al-Shehari, Taher ;
Alsowail, Rakan A. .
ENTROPY, 2021, 23 (10)
[3]  
Altman DG, 1998, BMJ-BRIT MED J, V317, P468
[4]   A novel learning algorithm to predict individual survival after liver transplantation for primary sclerosing cholangitis [J].
Andres, Axel ;
Montano-Lozam, Aldo ;
Greiner, Russell ;
Uhlich, Max ;
Jin, Ping ;
Hoehn, Bret ;
Bigam, David ;
Shapiro, James Andrew Mark ;
Kneteman, Norman Mark .
PLOS ONE, 2018, 13 (03)
[5]   A Bayesian methodology to improve prediction of early graft loss after liver transplantation derived from the Liver Match study [J].
Angelico, Mario ;
Nardi, Alessandra ;
Romagnoli, Renato ;
Marianelli, Tania ;
Corradini, Stefano Ginanni ;
Tandoi, Francesco ;
Gavrila, Caius ;
Salizzoni, Mauro ;
Pinna, Antonio D. ;
Cillo, Umberto ;
Gridelli, Bruno ;
De Carlis, Luciano G. ;
Colledan, Michele ;
Gerunda, Giorgio E. ;
Costa, Alessandro Nanni ;
Strazzabosco, Mario ;
Fagiuoli, S. ;
Caraceni, P. ;
Toniutto, P. L. ;
Salizzoni, Torino M. ;
Bertolotti, G. ;
Patrono, D. ;
De Carlis, L. ;
Slim, A. ;
Mangoni, J. M. E. ;
Rossi, G. ;
Caccamo, L. ;
Antonelli, B. ;
Mazzaferro, V. ;
Regalia, E. ;
Sposito, C. ;
Corno, V. ;
Tagliabue, F. ;
Marin, S. ;
Vitale, A. ;
Gringeri, E. ;
Donataccio, M. ;
Donataccio, D. ;
Baccarani, U. ;
Lorenzin, D. ;
Bitetto, D. ;
Valente, U. ;
Gelli, M. ;
Cupo, P. ;
Rompianesi, G. ;
Grazi, G. L. ;
Cucchetti, A. ;
Zanf, C. ;
Risaliti, A. ;
Faraci, M. G. .
DIGESTIVE AND LIVER DISEASE, 2014, 46 (04) :340-347
[6]   Biliary Complications Following Liver Transplantation [J].
Ayoub, Walid S. ;
Esquivel, Carlos O. ;
Martin, Paul .
DIGESTIVE DISEASES AND SCIENCES, 2010, 55 (06) :1540-1546
[7]   A deep learning framework for personalised dynamic diagnosis of graft fibrosis after liver transplantation: a retrospective, single Canadian centre, longitudinal study [J].
Azhie, Amirhossein ;
Sharma, Divya ;
Sheth, Priya ;
Qazi-Arisar, Fakhar Ali ;
Zaya, Rita ;
Naghibzadeh, Maryam ;
Duan, Kai ;
Fischer, Sandra ;
Patel, Keyur ;
Tsien, Cynthia ;
Selzner, Nazia ;
Lilly, Leslie ;
Jaeckel, Elmar ;
Xu, Wei ;
Bhat, Mamatha .
LANCET DIGITAL HEALTH, 2023, 5 (07) :e458-e466
[8]  
Bagheri Lankarani K., 2020, Int. J. Hosp. Res., V9
[9]  
Bagheri Lankarani Kamran, 2022, J Biomed Phys Eng, V12, P591, DOI [10.31661/jbpe.v0i0.2010-1212, 10.31661/jbpe.v0i0.2010-1212]
[10]  
Bezjak Miran, 2023, Ann Transl Med, V11, P345, DOI [10.21037/atm-22-6469, 10.21037/atm-22-6469]