Effect of ZrO2-MoO3 on the properties of in situ synthesized corundum-mullite composite thermal storage ceramics

被引:1
作者
Shen, Yaqiang [1 ]
Xu, Xiaohong [1 ]
Wu, Jianfeng [1 ]
Yu, Jiaqi [1 ]
Qiu, Saixi [1 ]
Zhang, Deng [1 ]
机构
[1] Wuhan Univ Technol, Sch Mat Sci & Engn, Wuhan 430070, Peoples R China
关键词
Corundum-mullite composite ceramics; Thermal storage ceramics; ZrO2-MoO3; Intragranular structure; CRACK-PROPAGATION; SHOCK RESISTANCE; PERFORMANCE; ENHANCEMENT;
D O I
10.1016/j.ceramint.2024.12.056
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Based on the requirements for solar thermal storage materials, thermal storage ceramics must possess not only excellent thermal storage and thermal conductivity but also high strength and thermal shock resistance. This study investigates the effects of zirconia-molybdenum oxide composite additives on the properties of corundummullite composite ceramics. It has been shown that at high temperatures, the solid solution formed by the reaction between MoO3 and Al2O3 decomposes to generate highly reactive nano-sized alumina grains, which not only promote the densification process of the matrix but also act as a second phase to form an "intragranular" structure within the corundum grains. The "intragranular" structure, along with the presence of added zirconia, significantly enhances the mechanical and thermal shock resistance of the samples. After sintering at 1650 degrees C, the water absorption, porosity, bulk density, bending strength, thermal conductivity, and thermal storage density of the C3 sample containing 4 wt% ZrO2 and 3 wt% MoO3 were measured as 0.26 %, 0.93 %, 3.55 g/cm3, 245.06 MPa, 10.13 W (m K)-1 (25 degrees C), and 1363.54 kJ kg-1 (1000 degrees C). After undergoing 30 thermal shocks, the bending strength of the C3 sample increased by 9.13 %, reaching 267.44 MPa.
引用
收藏
页码:6110 / 6124
页数:15
相关论文
共 40 条
  • [1] Liu M., Saman W., Bruno F., Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems, Renew. Sustain. Energy Rev., 16, 4, pp. 2118-2132, (2012)
  • [2] Masera K., Tannous H., Stojceska V., Et al., An investigation of the recent advances of the integration of solar thermal energy systems to the dairy processes, Renew. Sustain. Energy Rev., 172, (2023)
  • [3] Wang G., Tang Z., Gao Y., Et al., Phase change thermal storage materials for interdisciplinary applications, Chem. Rev., 123, 11, pp. 6953-7024, (2023)
  • [4] Sadeghi G., Energy storage on demand: thermal energy storage development, materials, design, and integration challenges, Energy Storage Mater., 46, pp. 192-222, (2022)
  • [5] Xu X., Zhang Q., Wu J., Et al., Preparation and characterization of corundum-based ceramics for thermal storage, Ceram. Int., 47, 16, pp. 23620-23629, (2021)
  • [6] Lao X., Xu X., Jiang W., Et al., Influences of impurities and mineralogical structure of different kaolin minerals on thermal properties of cordierite ceramics for high-temperature thermal storage, Appl. Clay Sci., 187, (2020)
  • [7] Tu Z., Lao X., Xu X., Et al., One-step synthesis of Al<sub>2</sub>O<sub>3</sub>-β-Sialon nanowhiskers ceramics for fluid-bed thermal storage system of solar energy, Nanotechnology, 5, (2024)
  • [8] Xu X., Shen Y., Wu J., Et al., The thermal shock resistance of in-situ synthesized mullite absorption and storage integrated ceramics for solar thermal power generation, Ceram. Int., 50, 5, pp. 7843-7852, (2024)
  • [9] Wang J., Hui S., Guo R., Et al., Effect of Y<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> content on improving mechanical properties and thermal shock resistance of AlN-based composite ceramics, Ceram. Int., (2024)
  • [10] Wu J., Zhang C., Xu X., Et al., Enhanced thermal shock resistance of ZrO<sub>2</sub>-reinforced Al<sub>2</sub>O<sub>3</sub>-CaAl<sub>12</sub>O<sub>19</sub> composites prepared from ferrotitanium slag: crack propagation resistance mechanisms, Ceram. Int., 47, 10, pp. 14540-14550, (2021)