Towards a more inductive world for drug repurposing approaches

被引:0
作者
de la Fuente, Jesus [1 ,2 ]
Serrano, Guillermo [1 ,2 ,3 ]
Veleiro, Uxia [1 ,4 ]
Casals, Mikel [2 ]
Vera, Laura [1 ]
Pizurica, Marija [5 ,6 ]
Gomez-Cebrian, Nuria [7 ]
Puchades-Carrasco, Leonor [7 ]
Pineda-Lucena, Antonio [1 ]
Ochoa, Idoia [2 ,8 ]
Vicent, Silve [1 ,9 ]
Gevaert, Olivier [5 ]
Hernaez, Mikel [1 ,4 ,8 ,9 ]
机构
[1] CIMA Univ Navarra, Canc Ctr Clin Univ Navarra CCUN, Pamplona, Spain
[2] Univ Navarra, Tecnun, San Sebastian, Spain
[3] King Abdullah Univ Sci & Technol, Biol & Environm Sci & Engn Div BESE, Thuwal, Saudi Arabia
[4] Navarra Inst Hlth Res IdiSNA, Pamplona, Navarra, Spain
[5] Stanford Univ, Stanford Ctr Biomed Informat Res, Stanford, CA 94305 USA
[6] Univ Ghent, Internet Technol & Data Sci Lab IDLAB, Ghent, Belgium
[7] Inst Invest Sanitaria Fe IISLAFE, Drug Discovery Unit, Valencia, Spain
[8] Univ Navarra, Inst Ciencia Datos Inteligencia Artificial DATAI, Pamplona, Navarra, Spain
[9] Ctr Invest Biomed Red Canc CIBERONC, Madrid, Spain
关键词
INTERACTION NETWORKS; DATABASE; DISCOVERY; PARADIGM;
D O I
10.1038/s42256-025-00987-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Drug-target interaction (DTI) prediction is a challenging albeit essential task in drug repurposing. Learning on graph models has drawn special attention as they can substantially reduce drug repurposing costs and time commitment. However, many current approaches require high-demand additional information besides DTIs that complicates their evaluation process and usability. Additionally, structural differences in the learning architecture of current models hinder their fair benchmarking. In this work, we first perform an in-depth evaluation of current DTI datasets and prediction models through a robust benchmarking process and show that DTI methods based on transductive models lack generalization and lead to inflated performance when traditionally evaluated, making them unsuitable for drug repurposing. We then propose a biologically driven strategy for negative-edge subsampling and uncovered previously unknown interactions via in vitro validation, missed by traditional subsampling. Finally, we provide a toolbox from all generated resources, crucial for fair benchmarking and robust model design.
引用
收藏
页码:495 / 508
页数:17
相关论文
共 68 条
  • [31] Signature-driven repurposing of Midostaurin for combination with MEK1/2 and KRASG12C inhibitors in lung cancer
    Macaya, Irati
    Roman, Marta
    Welch, Connor
    Entrialgo-Cadierno, Rodrigo
    Salmon, Marina
    Santos, Alba
    Feliu, Iker
    Kovalski, Joanna
    Lopez, Ines
    Rodriguez-Remirez, Maria
    Palomino-Echeverria, Sara
    Lonfgren, Shane M.
    Ferrero, Macarena
    Calabuig, Silvia
    Ludwig, Iziar A.
    Lara-Astiaso, David
    Jantus-Lewintre, Eloisa
    Guruceaga, Elizabeth
    Narayanan, Shruthi
    Ponz-Sarvise, Mariano
    Pineda-Lucena, Antonio
    Lecanda, Fernando
    Ruggero, Davide
    Khatri, Purvesh
    Santamaria, Enrique
    Fernandez-Irigoyen, Joaquin
    Ferrer, Irene
    Paz-Ares, Luis
    Drosten, Matthias
    Barbacid, Mariano
    Gil-Bazo, Ignacio
    Vicent, Silve
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [32] Shifting from the single to the multitarget paradigm in drug discovery
    Medina-Franco, Jose L.
    Giulianotti, Marc A.
    Welmaker, Gregory S.
    Houghten, Richard A.
    [J]. DRUG DISCOVERY TODAY, 2013, 18 (9-10) : 495 - 501
  • [33] Mencher SK., 2005, BMC CLIN PHARM, V5, P3, DOI DOI 10.1186/1472-6904-5-3
  • [34] DDR: efficient computational method to predict drug-target interactions using graph mining and machine learning approaches
    Olayan, Rawan S.
    Ashoor, Haitham
    Bajic, Vladimir B.
    [J]. BIOINFORMATICS, 2018, 34 (07) : 1164 - 1173
  • [35] Computational modelling of cancerous mutations in the EGFR/ERK signalling pathway
    Orton, Richard J.
    Adriaens, Michiel E.
    Gormand, Amelie
    Sturm, Oliver E.
    Kolch, Walter
    Gilbert, David R.
    [J]. BMC SYSTEMS BIOLOGY, 2009, 3 : 100
  • [36] DeepDTA: deep drug-target binding affinity prediction
    Ozturk, Hakime
    Ozgur, Arzucan
    Ozkirimli, Elif
    [J]. BIOINFORMATICS, 2018, 34 (17) : 821 - 829
  • [37] Toward more realistic drug-target interaction predictions
    Pahikkala, Tapio
    Airola, Antti
    Pietila, Sami
    Shakyawar, Sushil
    Szwajda, Agnieszka
    Tang, Jing
    Aittokallio, Tero
    [J]. BRIEFINGS IN BIOINFORMATICS, 2015, 16 (02) : 325 - 337
  • [38] Global mapping of pharmacological space
    Paolini, Gaia V.
    Shapland, Richard H. B.
    van Hoorn, Willem P.
    Mason, Jonathan S.
    Hopkins, Andrew L.
    [J]. NATURE BIOTECHNOLOGY, 2006, 24 (07) : 805 - 815
  • [39] Flaws in evaluation schemes for pair-input computational predictions
    Park, Yungki
    Marcotte, Edward M.
    [J]. NATURE METHODS, 2012, 9 (12) : 1134 - 1136
  • [40] Paszke A, 2019, ADV NEUR IN, V32