Towards a more inductive world for drug repurposing approaches

被引:0
作者
de la Fuente, Jesus [1 ,2 ]
Serrano, Guillermo [1 ,2 ,3 ]
Veleiro, Uxia [1 ,4 ]
Casals, Mikel [2 ]
Vera, Laura [1 ]
Pizurica, Marija [5 ,6 ]
Gomez-Cebrian, Nuria [7 ]
Puchades-Carrasco, Leonor [7 ]
Pineda-Lucena, Antonio [1 ]
Ochoa, Idoia [2 ,8 ]
Vicent, Silve [1 ,9 ]
Gevaert, Olivier [5 ]
Hernaez, Mikel [1 ,4 ,8 ,9 ]
机构
[1] CIMA Univ Navarra, Canc Ctr Clin Univ Navarra CCUN, Pamplona, Spain
[2] Univ Navarra, Tecnun, San Sebastian, Spain
[3] King Abdullah Univ Sci & Technol, Biol & Environm Sci & Engn Div BESE, Thuwal, Saudi Arabia
[4] Navarra Inst Hlth Res IdiSNA, Pamplona, Navarra, Spain
[5] Stanford Univ, Stanford Ctr Biomed Informat Res, Stanford, CA 94305 USA
[6] Univ Ghent, Internet Technol & Data Sci Lab IDLAB, Ghent, Belgium
[7] Inst Invest Sanitaria Fe IISLAFE, Drug Discovery Unit, Valencia, Spain
[8] Univ Navarra, Inst Ciencia Datos Inteligencia Artificial DATAI, Pamplona, Navarra, Spain
[9] Ctr Invest Biomed Red Canc CIBERONC, Madrid, Spain
关键词
INTERACTION NETWORKS; DATABASE; DISCOVERY; PARADIGM;
D O I
10.1038/s42256-025-00987-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Drug-target interaction (DTI) prediction is a challenging albeit essential task in drug repurposing. Learning on graph models has drawn special attention as they can substantially reduce drug repurposing costs and time commitment. However, many current approaches require high-demand additional information besides DTIs that complicates their evaluation process and usability. Additionally, structural differences in the learning architecture of current models hinder their fair benchmarking. In this work, we first perform an in-depth evaluation of current DTI datasets and prediction models through a robust benchmarking process and show that DTI methods based on transductive models lack generalization and lead to inflated performance when traditionally evaluated, making them unsuitable for drug repurposing. We then propose a biologically driven strategy for negative-edge subsampling and uncovered previously unknown interactions via in vitro validation, missed by traditional subsampling. Finally, we provide a toolbox from all generated resources, crucial for fair benchmarking and robust model design.
引用
收藏
页码:495 / 508
页数:17
相关论文
共 68 条
  • [1] Polypharmacology: Challenges and Opportunities in Drug Discovery
    Anighoro, Andrew
    Bajorath, Juergen
    Rastelli, Giulio
    [J]. JOURNAL OF MEDICINAL CHEMISTRY, 2014, 57 (19) : 7874 - 7887
  • [2] [Anonymous], 2015, The PyMOL Molecular Graphics System, V1
  • [3] Interpretable bilinear attention network with domain adaptation improves drug-target prediction
    Bai, Peizhen
    Miljkovic, Filip
    John, Bino
    Lu, Haiping
    [J]. NATURE MACHINE INTELLIGENCE, 2023, 5 (02) : 126 - 136
  • [4] UniProt: the Universal Protein Knowledgebase in 2023
    Bateman, Alex
    Martin, Maria-Jesus
    Orchard, Sandra
    Magrane, Michele
    Ahmad, Shadab
    Alpi, Emanuele
    Bowler-Barnett, Emily H.
    Britto, Ramona
    Cukura, Austra
    Denny, Paul
    Dogan, Tunca
    Ebenezer, ThankGod
    Fan, Jun
    Garmiri, Penelope
    Gonzales, Leonardo Jose da Costa
    Hatton-Ellis, Emma
    Hussein, Abdulrahman
    Ignatchenko, Alexandr
    Insana, Giuseppe
    Ishtiaq, Rizwan
    Joshi, Vishal
    Jyothi, Dushyanth
    Kandasaamy, Swaathi
    Lock, Antonia
    Luciani, Aurelien
    Lugaric, Marija
    Luo, Jie
    Lussi, Yvonne
    MacDougall, Alistair
    Madeira, Fabio
    Mahmoudy, Mahdi
    Mishra, Alok
    Moulang, Katie
    Nightingale, Andrew
    Pundir, Sangya
    Qi, Guoying
    Raj, Shriya
    Raposo, Pedro
    Rice, Daniel L.
    Saidi, Rabie
    Santos, Rafael
    Speretta, Elena
    Stephenson, James
    Totoo, Prabhat
    Turner, Edward
    Tyagi, Nidhi
    Vasudev, Preethi
    Warner, Kate
    Watkins, Xavier
    Zellner, Hermann
    [J]. NUCLEIC ACIDS RESEARCH, 2023, 51 (D1) : D523 - D531
  • [5] The Protein Data Bank
    Berman, HM
    Westbrook, J
    Feng, Z
    Gilliland, G
    Bhat, TN
    Weissig, H
    Shindyalov, IN
    Bourne, PE
    [J]. NUCLEIC ACIDS RESEARCH, 2000, 28 (01) : 235 - 242
  • [6] Bronstein M. M., 2021, PREPRINT
  • [7] Comparative Toxicogenomics Database (CTD): update 2021
    Davis, Allan Peter
    Grondin, Cynthia J.
    Johnson, Robin J.
    Sciaky, Daniela
    Wiegers, Jolene
    Wiegers, Thomas C.
    Mattingly, Carolyn J.
    [J]. NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) : D1138 - D1143
  • [8] Comprehensive analysis of kinase inhibitor selectivity
    Davis, Mindy I.
    Hunt, Jeremy P.
    Herrgard, Sanna
    Ciceri, Pietro
    Wodicka, Lisa M.
    Pallares, Gabriel
    Hocker, Michael
    Treiber, Daniel K.
    Zarrinkar, Patrick P.
    [J]. NATURE BIOTECHNOLOGY, 2011, 29 (11) : 1046 - U124
  • [9] de la Fuente J., 2024, ZENODO, DOI [10.5281/zenodo.14068683, DOI 10.5281/ZENODO.14068683]
  • [10] Innovation in the pharmaceutical industry: New estimates of R&D costs
    DiMasi, Joseph A.
    Grabowski, Henry G.
    Hansen, Ronald W.
    [J]. JOURNAL OF HEALTH ECONOMICS, 2016, 47 : 20 - 33