A note on modular frames for closed range operators in Hilbert C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}^{*}$$\end{document}-modules

被引:0
作者
Salah Eddine Oustani [1 ]
机构
[1] University of Ibn Tofail Science Faculty,Laboratory of Analysis, Geometry and Applications
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2024年 / 73卷 / 7期
关键词
-frames; Semi-regular operator; EP operator; 42C15; 47A11; 47A55;
D O I
10.1007/s12215-024-01065-9
中图分类号
学科分类号
摘要
One of the most important problems in the study of frames and its extensions is the invariance of these systems under perturbation. The current paper is concerned with the construction of frames for closed range operators in Hilbert modules.
引用
收藏
页码:2643 / 2652
页数:9
相关论文
共 38 条
[1]  
Alijani A(2019)Duals of some constructed Sahand Commun. Math. Anal. 1 165-177
[2]  
Bölcskei H(1998)-frames by equivalent-frames IEEE Trans. Signal Process. 46 3256-3268
[3]  
Hlawatsch F(1997)Frame-theoretic analysis of oversampled filter banks Integral Equ. Oper. Theory 28 133-146
[4]  
Feichtinger HG(2009)Generalized inverses and the maximal radius of regularity of a Fredholm operator J. Oper. Theory 1 171-190
[5]  
Badea C(1975)Metric and homogeneous structure of closed range operators Can. Math. Bull. 18 327-333
[6]  
Mbekhta M(1986)EP operators and generalized inverses J. Math. Phys. 27 1271-1283
[7]  
Corach G(1952)Painless non orthogonal expansions Trans. Am. Math. Soc. 72 341-366
[8]  
Maestripieri A(2002)A class of nonharmonic Fourier series J. Oper. Theory 48 273-314
[9]  
Mbekhta M(2012)Frames in Hilbert Appl. Comput. Harmon. Anal. 32 139-144
[10]  
Campbell SL(2020)-modules and Linear Multilinear Algebra 68 1990-2004