Multimodal machine learning to predict surgical site infection with healthcare workload impact assessment

被引:0
|
作者
Mclean, Kenneth A. [1 ,2 ]
Sgro, Alessandro [3 ]
Brown, Leo R. [1 ]
Buijs, Louis F. [3 ]
Mountain, Katie E. [1 ]
Shaw, Catherine A. [1 ,2 ]
Drake, Thomas M. [1 ,2 ]
Pius, Riinu [1 ,2 ]
Knight, Stephen R. [1 ,2 ]
Fairfield, Cameron J. [1 ,2 ]
Skipworth, Richard J. E. [1 ]
Tsaftaris, Sotirios A. [4 ]
Wigmore, Stephen J. [1 ]
Potter, Mark A. [3 ]
Bouamrane, Matt-Mouley [2 ]
Harrison, Ewen M. [1 ,2 ]
Baweja, K. [5 ]
Cambridge, W. A. [5 ]
Chauhan, V. [5 ]
Czyzykowska, K. [5 ]
Edirisooriya, M. [5 ]
Forsyth, A. [5 ]
Fox, B. [5 ]
Fretwell, J. [5 ]
Gent, C. [5 ]
Gherman, A. [5 ]
Green, L. [5 ]
Grewar, J. [5 ]
Heelan, S. [5 ]
Henshall, D. [5 ]
Iiuoma, C. [5 ]
Jayasangaran, S. [5 ]
Johnston, C. [1 ]
Kennedy, E. [2 ]
Kremel, D. [3 ]
Kung, J. [1 ]
Kwong, J. [5 ]
Leavy, C. [5 ]
Liu, J. [5 ]
Mackay, S. [5 ]
Macnamara, A. [1 ]
Mowitt, S. [1 ]
Musenga, E. [5 ]
Ng, N. [5 ]
Ng, Z. H. [5 ]
O'Neill, S. [1 ]
Ramage, M. [1 ]
Reed, J. [5 ]
Riad, A. [5 ]
Scott, C. [5 ]
机构
[1] Univ Edinburgh, Dept Clin Surg, 51 Little France Crescent, Edinburgh EH16 4SA, Scotland
[2] Univ Edinburgh, Usher Inst, Ctr Med Informat, 9 Little France Rd, Edinburgh EH16 4UX, Scotland
[3] Western Gen Hosp, Colorectal Unit, Edinburgh EH4 2XU, Scotland
[4] UNIV EDINBURGH, AI Hub Causal Healthcare AI Real Data, EDINBURGH EH9 3FG, Scotland
[5] Univ Edinburgh, Edinburgh Med Sch, Edinburgh, Scotland
来源
NPJ DIGITAL MEDICINE | 2025年 / 8卷 / 01期
基金
英国医学研究理事会;
关键词
IMPLEMENTATION; INTERVENTIONS;
D O I
10.1038/s41746-024-01419-8
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Remote monitoring is essential for healthcare digital transformation, however, this poses greater burdens on healthcare providers to review and respond as the data collected expands. This study developed a multimodal neural network to automate assessments of patient-generated data from remote postoperative wound monitoring. Two interventional studies including adult gastrointestinal surgery patients collected wound images and patient-reported outcome measures (PROMs) for 30-days postoperatively. Neural networks for PROMs and images were combined to predict surgical site infection (SSI) diagnosis within 48 h. The multimodal neural network model to predict confirmed SSI within 48 h remained comparable to clinician triage (0.762 [0.690-0.835] vs 0.777 [0.721-0.832]), with an excellent performance on external validation. Simulated usage indicated an 80% reduction in staff time (51.5 to 9.1 h) without compromising diagnostic accuracy. This multimodal approach can effectively support remote monitoring, alleviating provider burden while ensuring high-quality postoperative care.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Using Machine Learning to Predict Surgical Site Infection After Lumbar Spine Surgery
    Chen, Tianyou
    Liu, Chong
    Zhang, Zide
    Liang, Tuo
    Zhu, Jichong
    Zhou, Chenxing
    Wu, Shaofeng
    Yao, Yuanlin
    Huang, Chengqian
    Zhang, Bin
    Feng, Sitan
    Wang, Zequn
    Huang, Shengsheng
    Sun, Xuhua
    Chen, Liyi
    Zhan, Xinli
    INFECTION AND DRUG RESISTANCE, 2023, 16 : 5197 - 5207
  • [2] A machine learning model to predict surgical site infection after surgery of lower extremity fractures
    Gutierrez-Naranjo, Jose M.
    Moreira, Alvaro
    Valero-Moreno, Eduardo
    Bullock, Travis S.
    Ogden, Liliana A.
    Zelle, Boris A.
    INTERNATIONAL ORTHOPAEDICS, 2024, 48 (07) : 1887 - 1896
  • [3] Application of Machine Learning to Prediction of Surgical Site Infection
    Fletcher, Richard Ribon
    Olubeko, Olasubomi
    Sonthalia, Harsh
    Kateera, Fredrick
    Nkurunziza, Theoneste
    Ashby, Joanna L.
    Riviello, Robert
    Hedt-Gauthier, Bethany
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 2234 - 2237
  • [4] Impact of a Multimodal Approach in Prevention of Surgical Site Infection in Hepatic Transplant Recipients
    Prieto, J.
    Medina, J. C.
    Lopez, M.
    Rando, K.
    Iglesias, C.
    Harguindeguy, M.
    Leites, A.
    Etlin, A.
    Menendez, J.
    Valverde, M.
    Scalone, P.
    Castelli, J.
    Grecco, G.
    Abelleira, M.
    Gonzalez, L. S.
    Gerona, S.
    TRANSPLANTATION PROCEEDINGS, 2016, 48 (02) : 658 - 664
  • [5] Is it possible to predict Surgical Site Infection?
    Erciyestepe, Sezgi Gullu
    Boran, Ahmet Birtan
    Yildirim, Merve Sezer
    Erciyestepe, Mert
    MALAWI MEDICAL JOURNAL, 2023, 35 (03) : 190 - 195
  • [6] Review of multimodal machine learning approaches in healthcare
    Krones, Felix
    Marikkar, Umar
    Parsons, Guy
    Szmul, Adam
    Mahdi, Adam
    INFORMATION FUSION, 2025, 114
  • [7] Machine learning applications for the prediction of surgical site infection in neurological operations
    Tunthanathip, Thara
    Sae-heng, Sakchai
    Oearsakul, Thakul
    Sakarunchai, Ittichai
    Kaewborisutsakul, Anukoon
    Taweesomboonyat, Chin
    NEUROSURGICAL FOCUS, 2019, 47 (02)
  • [8] Blood Biomarkers Predict Cardiac Workload Using Machine Learning
    Shou, Lan
    Huang, Wendy Wenyu
    Barszczyk, Andrew
    Wu, Si Jia
    Han, Helen
    Waese-Perlman, Alex
    Chen, Lulu
    Wei, Jing
    Luo, Hong
    Lee, Kang
    BIOMED RESEARCH INTERNATIONAL, 2021, 2021
  • [9] Using multiple indicators to predict the risk of surgical site infection after ORIF of tibia fractures: a machine learning based study
    Ying, Hui
    Guo, Bo-Wen
    Wu, Hai-Jian
    Zhu, Rong-Ping
    Liu, Wen-Cai
    Zhong, Hong-Fa
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2023, 13
  • [10] Systematic evaluation of machine learning models for postoperative surgical site infection prediction
    van Boekel, Anna M.
    van der Meijden, Siri L.
    Arbous, Sesmu M.
    Nelissen, Rob G. H. H.
    Veldkamp, Karin E.
    Nieswaag, Emma B.
    Jochems, Kim F. T.
    Holtz, Jeroen
    Veenstra, Annekee van IJlzinga
    Reijman, Jeroen
    de Jong, Ype
    van Goor, Harry
    Wiewel, Maryse A.
    Schoones, Jan W.
    Geerts, Bart F.
    de Boer, Mark G. J.
    PLOS ONE, 2024, 19 (12):