Promotional role of methanol and CO2 in carbon dioxide-rich syngas hydrogenation over slurry reactor utilizing combustion induced Cu-based catalysts

被引:0
作者
Pandey, Vaibhav [1 ]
Singh, Priyanshu Pratap [2 ]
Pant, Kamal Kishore [1 ,3 ,4 ,5 ]
Upadhyayula, Sreedevi [1 ]
Sengupta, Siddhartha [2 ]
机构
[1] Indian Inst Technol, Dept Chem Engn, Delhi 110016, India
[2] Indian Inst Technol, Indian Sch Mines, Dept Chem Engn, Dhanbad 826004, India
[3] Indian Inst Technol Roorkee, Dept Chem Engn, Roorkee 247667, India
[4] Indian Inst Technol Roorkee, Ctr Sustainable Energy, Roorkee 247667, India
[5] Univ Saskatchewan, Saskatoon, SK S7N 5A2, Canada
关键词
Hydrogenation; Methanol; Oxygen vacancy; CO; 2; utilization; Slurry reactor; CeO2; OXYGEN VACANCY SITE; OXIDATION; MECHANISM; CEO2; PERFORMANCE; SELECTIVITY; ADSORPTION; TIO2(110); STABILITY; IMPACT;
D O I
10.1016/j.mtsust.2025.101082
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Converting CO2 to methanol directly remains a hurdle due to catalyst and thermodynamic limitations. This study proposes a solution: using Cu-MgO-CeO2 (CuMgCe) catalysts (synthesized by solvent combustion) in slurry reactors for methanol formation through methanol-assisted CO2-rich syngas hydrogenation. The key innovation lies in the catalyst design by focusing on CO2-rich syngas mixtures, we establish a crucial link between catalyst structure and its activity (structure-activity relationship). Our CuMgCe catalyst achieves a space-time yield of 646 gMeOH/kgcat-h-1, exceeding lab-made industrial catalysts (608.5 gMeOH/kgcat-h-1). This yield is further boosted by 5% through an ingenious method- adding initial methanol, which promotes formate intermediates for enhanced productivity. In-depth analysis reveals CO2 formation during CO-TPD-MS and CO-TPR-MS, generating highly active surface species (CO2 delta-) ideal for forming formate intermediates. In-situ DRIFTS confirms the dominance of this formate pathway on CuMgCe for selective methanol synthesis. A mechanistic study sheds light on the synergistic effect of MgO and CeO2 in the lab-prepared CuMgCe catalyst. This synergy promotes methanol formation during CO2-cofed syngas conversion. This research paves the way for highly efficient and selective catalysts for CO2 utilization in slurry reactor technology, offering a significant step towards cleaner fuel production.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Modulating electronic structure and exposed surface area of Cu-based catalysts by Pd doping for enhanced CO2 2 hydrogenation to methanol
    Han, Caiyun
    Gao, Yunfei
    Qin, Langlang
    Cao, Yu
    Wang, Shuang
    Li, Jinping
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354
  • [42] Fabrication of Zr-Ce Oxide Solid Solution Surrounded Cu-Based Catalyst Assisted by a Microliquid Film Reactor for Efficient CO2 Hydrogenation to Produce Methanol
    Wang, Hao
    Zhang, Guangcheng
    Fan, Guoli
    Yang, Lan
    Li, Feng
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (45) : 16188 - 16200
  • [43] Unravelling the mechanisms of CO2 hydrogenation to methanol on Cu-based catalysts using first-principles multiscale modelling and experiments
    Hus, Matej
    Kopac, Drejc
    Stefancic, Neja Strah
    Jurkovic, Damjan Lasic
    Dasireddy, Venkata D. B. C.
    Likozar, Blaz
    CATALYSIS SCIENCE & TECHNOLOGY, 2017, 7 (04) : 5900 - 5913
  • [44] CO2 Hydrogenation to Methanol over Partially Reduced Cu-SiO2P Catalysts: The Crucial Role of Hydroxyls for Methanol Selectivity
    Jangam, Ashok
    Hongmanorom, Plaifa
    Wai, Ming Hui
    Poerjoto, Antonius Jeffry
    Xi, Shibo
    Borgna, Armando
    Kawi, Sibudjing
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (11) : 12149 - 12162
  • [45] Deciphering the role of CNT for methanol fuel synthesis by CO2 hydrogenation over Cu/CNT catalysts
    Din, Israf Ud
    Alharthi, Abdulrahman I.
    Alotaibi, Mshari A.
    Naeem, A.
    Saeed, Tooba
    Nassar, Amal A.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2023, 194 : 115 - 120
  • [46] CO2 hydrogenation to methanol over Cu-In intermetallic catalysts: Effect of reduction temperature
    Shi, Zhisheng
    Tan, Qingqing
    Tian, Chao
    Pan, Yu
    Sun, Xuewei
    Zhang, Jinxin
    Wu, Dongfang
    JOURNAL OF CATALYSIS, 2019, 379 : 78 - 89
  • [47] CO2 Hydrogenation to Methanol and Methane over Carbon-Supported Catalysts
    Furimsky, Edward
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (35) : 15393 - 15423
  • [48] Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts
    Ma, Wenchao
    He, Xiaoyang
    Wang, Wei
    Xie, Shunji
    Zhang, Qinghong
    Wang, Ye
    CHEMICAL SOCIETY REVIEWS, 2021, 50 (23) : 12897 - 12914
  • [49] CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared via a route of solid-state reaction
    Guo, Xiaoming
    Mao, Dongsen
    Lu, Guanzhong
    Wang, Song
    Wu, Guisheng
    CATALYSIS COMMUNICATIONS, 2011, 12 (12) : 1095 - 1098
  • [50] Role of Metal Oxides in Cu-Based Catalysts with NaBH4 Reduction for the Synthesis of Methanol from CO2/H2
    Gang Zhou
    Zhenglong He
    Xiaosu Dong
    Catalysis Letters, 2021, 151 : 1091 - 1101