Influence of Carbon Black on the Elastic Modulus of Composite Materials Based on Linear Low Density Polyethylene at Various Structural Levels

被引:1
作者
Kropotin, O. V. [1 ]
Rogachev, E. A. [1 ]
Kalenchuk, A. A. [1 ]
机构
[1] Omsk State Tech Univ, Omsk, Russia
关键词
polymer-matrix composites; linear low-density polyethylene; carbon black; POLYMER COMPOSITES;
D O I
10.1007/s11029-025-10262-1
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The results of computational and experimental research on the influence of electrically conductive carbon black (CB) on the elastic modulus of composites based on linear low-density polyethylene (LLDPE) were presented. The study was carried out at various structural levels of composites: a cell with a single filler particle, a cell with randomly distributed filler particles, a composite with randomly distributed agglomerates, and a macro level of a composite. The results show that the agglomeration of filler with a low local content reduces the elastic modulus of the composite, while the agglomeration of filler with a high local content increases it. In the LLDPE+CB composites, the filler has a complex influence on the elastic modulus of the composite. The values of elastic modulus of the composite were influenced by both single CB particles and an agglomerated filler with an increased local content in the matrix. As a result, the elastic modulus of the LLDPE+CB composites at the macroscale level increases nonlinearly with increasing filler content.
引用
收藏
页码:67 / 78
页数:12
相关论文
共 28 条
[1]   Mechanical properties of carbon black/poly(ε-caprolactone)-based tissue scaffolds [J].
Al Habis, Nuha ;
El Moumen, Ahmed ;
Tarfaoui, Mostapha ;
Lafdi, Khalid .
ARABIAN JOURNAL OF CHEMISTRY, 2020, 13 (01) :3210-3217
[2]  
[Anonymous], 2000, CH 550-82 in Russian
[3]   Effect of Various Conductive Filler Additions on the Percolations Threshold of LLDPE Conductive Polymer Composites [J].
Badrul, F. ;
Halim, K. A. Abdul ;
Salleh, M. A. A. Mohd ;
Osman, A. F. ;
Omar, M. F. ;
Zakaria, M. S. ;
Jez, B. ;
Nabialek, M. .
ACTA PHYSICA POLONICA A, 2022, 142 (01) :137-140
[4]  
Badrul F., 2022, J. Phys. Conf. Ser., V2169
[5]  
Bandaletova AA., 2021, Professionally about oil, V6, P136
[6]   Modeling and simulation techniques for polymer nanoparticle composites - A review [J].
Bernardo, Luis F. A. ;
Amaro, Ana P. B. M. ;
Pinto, Deesy G. ;
Lopes, Sergio M. R. .
COMPUTATIONAL MATERIALS SCIENCE, 2016, 118 :32-46
[7]   Micromechanics-based modelling of stiffness and yield stress for silica/polymer nanocomposites [J].
Boutaleb, S. ;
Zairi, F. ;
Mesbah, A. ;
Nait-Abdelaziz, M. ;
Gloaguen, J. M. ;
Boukharouba, T. ;
Lefebvre, J. M. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2009, 46 (7-8) :1716-1726
[8]   Microstructure-Based Modeling of the Dynamic Behaviors of SiCp/7075Al Composites [J].
Chi, Qingbo ;
Du, Xiaoming ;
Wang, Yan ;
Cao, Lei .
MECHANICS OF COMPOSITE MATERIALS, 2024, 60 (01) :135-144
[9]   Effect of reinforcement shape on physical properties and representative volume element of particles-reinforced composites: Statistical and numerical approaches [J].
El Moumen, A. ;
Kanit, T. ;
Imad, A. ;
El Minor, H. .
MECHANICS OF MATERIALS, 2015, 83 :1-16
[10]   Computational thermal conductivity in porous materials using homogenization techniques: Numerical and statistical approaches [J].
El Moumen, A. ;
Kanit, T. ;
Imad, A. ;
El Minor, H. .
COMPUTATIONAL MATERIALS SCIENCE, 2015, 97 :148-158