On Semi-classical Limit of Spatially Homogeneous Quantum Boltzmann Equation: Asymptotic Expansion

被引:0
作者
He, Ling-Bing [1 ]
Lu, Xuguang [1 ]
Pulvirenti, Mario [2 ,3 ]
Zhou, Yu-Long [4 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Univ Roma La Sapienza, Dipartimento Matemat, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[3] Univ Aquila, Int Res Ctr M & MOCS, I-04012 Cisterna Latina, LT, Italy
[4] Sun Yat sen Univ, Sch Math, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金;
关键词
BOSE-EINSTEIN PARTICLES; NORDHEIM EQUATION; GLOBAL EXISTENCE; CONVERGENCE; BOSONS;
D O I
10.1007/s00220-024-05174-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We continue our previous work [Ling-Bing He, Xuguang Lu and Mario Pulvirenti, Comm. Math. Phys., 386(2021), no. 1, 143223.] on the limit of the spatially homogeneous quantum Boltzmann equation as the Planck constant epsilon tends to zero, also known as the semi-classical limit. For general interaction potential, we prove the following: (i). The spatially homogeneous quantum Boltzmann equations are locally well-posed in some weighted Sobolev spaces with quantitative estimates uniformly in epsilon. (ii). The semi-classical limit can be further described by the following asymptotic expansion formula: f(epsilon) (t, v) = fL(t, v) + O(epsilon(theta)). This holds locally in time in Sobolev spaces. Here f(epsilon) and f(L) are solutions to the quantum Boltzmann equation and the Fokker-Planck-Landau equation with the same initial this http URL convergent rate 0< theta <= 1 depends on the integrability of the Fourier transform of the particle interaction potential. Our new ingredients lie in a detailed analysis of the Uehling-Uhlenbeck operator from both angular cutoff and non-cutoff perspectives.
引用
收藏
页数:51
相关论文
共 28 条
[1]  
[Anonymous], NASA STI RECON TEC A
[2]   The Relativistic Quantum Boltzmann Equation Near Equilibrium [J].
Bae, Gi-Chan ;
Jang, Jin Woo ;
Yun, Seok-Bae .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 240 (03) :1593-1644
[3]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[4]   From the N-body schrodinger equation to the quantum boltzmann equation: A term-by-term convergence result in the weak coupling regime [J].
Benedetto, D. ;
Castella, F. ;
Esposito, R. ;
Pulvirenti, M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 277 (01) :1-44
[5]   On the weak-coupling limit for Bosons and Fermions [J].
Benedetto, D ;
Pulvirenti, M ;
Castella, F ;
Esposito, R .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (12) :1811-1843
[6]  
Benedetto D, 2007, BULL INST MATH ACAD, V2, P907
[7]   Some considerations on the derivation of the nonlinear quantum Boltzmann equation [J].
Benedetto, D ;
Castella, F ;
Esposito, R ;
Pulvirenti, M .
JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) :381-410
[8]   From Particle Systems to the Landau Equation: A Consistency Result [J].
Boblylev, A. V. ;
Pulvirenti, M. ;
Saffirio, C. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 319 (03) :683-702
[9]   On the Cauchy Problem for the Homogeneous Boltzmann-Nordheim Equation for Bosons: Local Existence, Uniqueness and Creation of Moments [J].
Briant, Marc ;
Einav, Amit .
JOURNAL OF STATISTICAL PHYSICS, 2016, 163 (05) :1108-1156
[10]   The Spatially Homogeneous Boltzmann Equation for Bose-Einstein Particles: Rate of Strong Convergence to Equilibrium [J].
Cai, Shuzhe ;
Lu, Xuguang .
JOURNAL OF STATISTICAL PHYSICS, 2019, 175 (02) :289-350