Ramsey and Gallai-Ramsey Numbers of Cycles and Books

被引:0
作者
Wei, Mei-qin [1 ,2 ]
Mao, Ya-ping [3 ,4 ]
Schiermeyer, Ingo [5 ]
Wang, Zhao [6 ]
机构
[1] Shanghai Maritime Univ, Sch Sci, Shanghai 201306, Peoples R China
[2] East China Normal Univ, Sch Math Sci, Shanghai 200041, Peoples R China
[3] Qinghai Normal Univ, Acad Plateau Sci & Sustainabil, Xining 810008, Qinghai, Peoples R China
[4] Qinghai Normal Univ, Sch Math & Statistis, Xining 810008, Qinghai, Peoples R China
[5] Tech Univ Bergakad Freiberg, Inst Diskrete Math & Algebra, D-09596 Freiberg, Germany
[6] China Jiliang Univ, Coll Sci, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Ramsey number; Gallai-Ramsey number; rainbow path; cycle; book graph; COMPLETE GRAPHS; STARS;
D O I
10.1007/s10255-025-0009-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given two non-empty graphs G, H and a positive integer k, the Gallai-Ramsey number gr(k)(G: H) is defined as the minimum integer N such that for all n >= N, every exact k-edge-coloring of K-n contains either a rainbow copy of G or a monochromatic copy of H. Denote gr(k)'(G: H) as the minimum integer N such that for all n >= N, every edge-coloring of K-n using at most k colors contains either a rainbow copy of G or a monochromatic copy of H. In this paper, we get some exact values or bounds for gr(k)(P-5: H) and gr(k)'(P-5: H), where H is a cycle or a book graph. In addition, our results support a conjecture of Li, Besse, Magnant, Wang and Watts in 2020.
引用
收藏
页码:425 / 440
页数:16
相关论文
共 51 条
[1]  
Bondy A., 2008, Graph Theory, DOI [DOI 10.1007/978-1-84628-970-5, 10.1007/978-1-84628-970-5]
[2]  
Bondy J.A., 1973, J. Combin. Theory Ser. B, V14, P46
[3]   Gallai-Ramsey numbers of C7 with multiple colors [J].
Bruce, Dylan ;
Song, Zi-Xia .
DISCRETE MATHEMATICS, 2019, 342 (04) :1191-1194
[4]  
Cameron K, 1997, J GRAPH THEOR, V26, P9, DOI 10.1002/(SICI)1097-0118(199709)26:1<9::AID-JGT2>3.0.CO
[5]  
2-N
[6]   Gallai-Ramsey Numbers of Odd Cycles and Complete Bipartite Graphs [J].
Chen, Ming ;
Li, Yusheng ;
Pei, Chaoping .
GRAPHS AND COMBINATORICS, 2018, 34 (06) :1185-1196
[7]  
Cheng XB, 2023, Arxiv, DOI [arXiv:2305.18218, 10.1007/s00454-024-00693-3, DOI 10.1007/S00454-024-00693-3]
[8]   MULTICOLOR RAMSEY NUMBERS FOR COMPLETE BIPARTITE GRAPHS [J].
CHUNG, FRK ;
GRAHAM, RL .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 18 (02) :164-169
[9]  
Diestel R., 2005, GRAPH THEORY, V3
[10]  
Dzido T, 2005, ELECTRON J COMB, V12