Ramsey and Gallai-Ramsey Numbers of Cycles and Books

被引:0
作者
Mei-qin Wei [1 ]
Ya-ping Mao [2 ]
Ingo Schiermeyer [3 ]
Zhao Wang [4 ]
机构
[1] School of Science, Shanghai Maritime University, Shanghai
[2] School of Mathematical Sciences, East China Normal University, Shanghai
[3] Academy of Plateau Science and Sustainability, and School of Mathematics and Statistis, Qinghai Normal University, Xining, Qinghai
[4] Institut für Diskrete Mathematik und Algebra, Technische Universität Bergakademie Freiberg, Freiberg
[5] College of Science, China Jiliang University, Hangzhou
来源
Acta Mathematicae Applicatae Sinica, English Series | 2025年 / 41卷 / 2期
基金
中国国家自然科学基金;
关键词
05C38; 05C55; 05D10; book graph; cycle; Gallai-Ramsey number; rainbow path; Ramsey number;
D O I
10.1007/s10255-025-0009-6
中图分类号
学科分类号
摘要
Given two non-empty graphs G, H and a positive integer k, the Gallai-Ramsey number grk(G: H) is defined as the minimum integer N such that for all n ≥ N, every exact k-edge-coloring of Kn contains either a rainbow copy of G or a monochromatic copy of H. Denote grk′(G: H) as the minimum integer N such that for all n ≥ N, every edge-coloring of Kn using at most k colors contains either a rainbow copy of G or a monochromatic copy of H. In this paper, we get some exact values or bounds for grk(P5: H) and grk′(P5: H), where H is a cycle or a book graph. In addition, our results support a conjecture of Li, Besse, Magnant, Wang and Watts in 2020. © The Editorial Office of AMAS & Springer-Verlag GmbH Germany 2025.
引用
收藏
页码:425 / 440
页数:15
相关论文
共 50 条
  • [1] Bondy J.A., Erdos P., Ramsey numbers for cycles in graphs, J. Combin. Theory, Ser. B, 14, pp. 46-54, (1973)
  • [2] Bondy J.A., Murty U.S.R., Graph Theory, (2008)
  • [3] Bruce D., Song Z.X., Gallai-Ramsey numbers of C<sub>7</sub> with multiple colors, Discrete Math, 342, 4, pp. 1191-1194, (2019)
  • [4] Cameron K., Edmonds J., Lambda composition, J. Graph Theory, 26, 1, pp. 9-16, (1997)
  • [5] Chen M., Li Y., Pei C., Gallai-Ramsey numbers of odd cycles and complete bipartite graphs, Graphs Combin, 34, pp. 1185-1196, (2018)
  • [6] Cheng X., Xu Z., Euclidean Gallai-Ramsey for various configurations, Discrete Comput. Geom, (2024)
  • [7] Chung F.R.K., Graham R.L., On multicolor Ramsey numbers for complete bipartite graphs, J. Combin. Theory, Ser. B, 18, pp. 164-169, (1975)
  • [8] Diestel R., Graph Theory, (2005)
  • [9] Dzido T., Nowik A., Szuca P., New lower bound for multicolor Ramsey numbers for even cycles, Electronic J. Combin, 12, (2005)
  • [10] Erdos P., Gallai T., On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar, 10, 3, pp. 337-356, (1959)