共 50 条
- [41] FqR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_qR$$\end{document}-linear skew constacyclic codes and their application of constructing quantum codes Quantum Information Processing, 2020, 19 (7)
- [42] Quantum codes from Z2Z2[u]/⟨u4⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_2\mathbb {Z}_2[u]/\langle u^4 \rangle $$\end{document}-cyclic codes Designs, Codes and Cryptography, 2022, 90 (2) : 343 - 366
- [43] (xn-(a+bw),ξ,η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x^n-(a+bw),\xi ,\eta )$$\end{document}-skew constacyclic codes over Fq+wFq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q}+w\mathbb {F}_{q}$$\end{document} and their applications in quantum codes Quantum Information Processing, 21 (10)
- [44] Self-dual codes over F2[u]/⟨u4⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_2[u]/\langle u^4 \rangle $$\end{document} and Jacobi forms over a totally real subfield of Q(ζ8)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}(\zeta _8)$$\end{document} Designs, Codes and Cryptography, 2021, 89 (5) : 1091 - 1109
- [45] A MacWilliams type identity on Lee weight for linear codes over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F}_2 + u\mathbb{F}_2^*$$\end{document} Journal of Systems Science and Complexity, 2012, 25 (1) : 186 - 194
- [46] (θ,δθ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\theta , \delta _\theta )$$\end{document}-Cyclic codes over Fq[u,v]/⟨u2-u,v2-v,uv-vu⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q[u,v]/\langle u^2-u, v^2-v, uv-vu \rangle $$\end{document} Designs, Codes and Cryptography, 2022, 90 (11) : 2763 - 2781
- [47] Structure of codes over the ring Z3[v]/〈v3−v〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_{3}[v]/\langle v^{3}-v\rangle $$\end{document} Applicable Algebra in Engineering, Communication and Computing, 2013, 24 (5) : 369 - 386
- [48] Linear codes with eight weights over Fp+uFp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_p+u\mathbb {F}_p$$\end{document} Journal of Applied Mathematics and Computing, 2022, 68 (5) : 3425 - 3443
- [49] Application of Constacyclic Codes Over the Semi Local Ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F_{{p^m}}} + v{F_{{p^m}}}$$\end{document} Indian Journal of Pure and Applied Mathematics, 2020, 51 (1) : 265 - 275
- [50] Binary self-dual codes and Jacobi forms over a totally real subfield of Q(ζ8)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}(\zeta _8)$$\end{document} Applicable Algebra in Engineering, Communication and Computing, 2023, 34 (3) : 377 - 392