The anti-de Sitter supergeometry revisited

被引:0
作者
Koning, Nowar E. [1 ]
Kuzenko, Sergei M. [1 ]
Raptakis, Emmanouil S. N. [1 ]
机构
[1] Univ Western Australia, Dept Phys M013, 35 Stirling Highway, Perth, WA 6009, Australia
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2025年 / 02期
基金
澳大利亚研究理事会;
关键词
Extended Supersymmetry; Superspaces; GRADED LIE-ALGEBRAS; AUXILIARY FIELDS; CLASSIFICATION; SUPERGRAVITY; FORMULATION; SUPERSPACE; SUPERSYMMETRY; CONSTRUCTION; INVARIANCE;
D O I
10.1007/JHEP02(2025)175
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In a supergravity framework, the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document}-extended anti-de Sitter (AdS) superspace in four spacetime dimensions, AdS44N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\textrm{AdS}}<^>{4\left|4\mathcal{N}\right.} $$\end{document}, is a maximally symmetric background that is described by a curved superspace geometry with structure group SL(2, & Copf;) x UN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textrm{U}\left(\mathcal{N}\right) $$\end{document}. On the other hand, within the group-theoretic setting, AdS44N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\textrm{AdS}}<^>{4\left|4\mathcal{N}\right.} $$\end{document} is realised as the coset superspace OSpN4 & Ropf;/SL2 & Copf;xON\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textrm{O}\textrm{Sp}\left(\left.\mathcal{N}\right|4;\mathbb{R}\right)/\left[\textrm{SL}\left(2,\mathbb{C}\right)\times \textrm{O}\left(\mathcal{N}\right)\right] $$\end{document}, with its structure group being SL(2, & Copf;) x ON\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textrm{O}\left(\mathcal{N}\right) $$\end{document}. Here we explain how the two frameworks are related. We give two explicit realisations of AdS44N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\textrm{AdS}}<^>{4\left|4\mathcal{N}\right.} $$\end{document} as a conformally flat superspace, thus extending the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 and N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 results available in the literature. As applications, we describe: (i) a two-parameter deformation of the AdS44N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\textrm{AdS}}<^>{4\left|4\mathcal{N}\right. } $$\end{document} interval and the corresponding superparticle model; (ii) some implications of conformal flatness for superconformal higher-spin multiplets and an effective action generating the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 super-Weyl anomaly; and (iii) kappa-symmetry of the massless AdS superparticle.
引用
收藏
页数:31
相关论文
共 79 条
  • [11] Conformal supergravity in five dimensions: new approach and applications
    Butter, Daniel
    Kuzenko, Sergei M.
    Novak, Joseph
    Tartaglino-Mazzucchelli, Gabriele
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (02):
  • [12] New higher-derivative invariants in N=2 supergravity and the Gauss-Bonnet term
    Butter, Daniel
    de Wit, Bernard
    Kuzenko, Sergei M.
    Lodato, Ivano
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (12):
  • [13] Conformal supergravity in three dimensions: off-shell action
    Butter, Daniel
    Kuzenko, Sergei M.
    Novak, Joseph
    Tartaglino-Mazzucchelli, Gabriele
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (10):
  • [14] Conformal supergravity in three dimensions: new off-shell formulation
    Butter, Daniel
    Kuzenko, Sergei M.
    Novak, Joseph
    Tartaglino-Mazzucchelli, Gabriele
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (09):
  • [15] Extended supersymmetric sigma models in AdS4 from projective superspace
    Butter, Daniel
    Kuzenko, Sergei M.
    Lindstrom, Ulf
    Tartaglino-Mazzucchelli, Gabriele
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2012, (05):
  • [16] A dual formulation of supergravity-matter theories
    Butter, Daniel
    Kuzenko, Sergei M.
    [J]. NUCLEAR PHYSICS B, 2012, 854 (01) : 1 - 27
  • [17] Butter D, 2011, J HIGH ENERGY PHYS, DOI 10.1007/JHEP10(2011)030
  • [18] Butter D, 2011, J HIGH ENERGY PHYS, DOI 10.1007/JHEP07(2011)081
  • [19] N=1 conformal superspace in four dimensions
    Butter, Daniel
    [J]. ANNALS OF PHYSICS, 2010, 325 (05) : 1026 - 1080
  • [20] SUPER-TWISTORS AND CONFORMAL SUPERSYMMETRY
    FERBER, A
    [J]. NUCLEAR PHYSICS B, 1978, 132 (1-2) : 55 - 64