The anti-de Sitter supergeometry revisited

被引:0
作者
Koning, Nowar E. [1 ]
Kuzenko, Sergei M. [1 ]
Raptakis, Emmanouil S. N. [1 ]
机构
[1] Univ Western Australia, Dept Phys M013, 35 Stirling Highway, Perth, WA 6009, Australia
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2025年 / 02期
基金
澳大利亚研究理事会;
关键词
Extended Supersymmetry; Superspaces; GRADED LIE-ALGEBRAS; AUXILIARY FIELDS; CLASSIFICATION; SUPERGRAVITY; FORMULATION; SUPERSPACE; SUPERSYMMETRY; CONSTRUCTION; INVARIANCE;
D O I
10.1007/JHEP02(2025)175
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In a supergravity framework, the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document}-extended anti-de Sitter (AdS) superspace in four spacetime dimensions, AdS44N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\textrm{AdS}}<^>{4\left|4\mathcal{N}\right.} $$\end{document}, is a maximally symmetric background that is described by a curved superspace geometry with structure group SL(2, & Copf;) x UN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textrm{U}\left(\mathcal{N}\right) $$\end{document}. On the other hand, within the group-theoretic setting, AdS44N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\textrm{AdS}}<^>{4\left|4\mathcal{N}\right.} $$\end{document} is realised as the coset superspace OSpN4 & Ropf;/SL2 & Copf;xON\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textrm{O}\textrm{Sp}\left(\left.\mathcal{N}\right|4;\mathbb{R}\right)/\left[\textrm{SL}\left(2,\mathbb{C}\right)\times \textrm{O}\left(\mathcal{N}\right)\right] $$\end{document}, with its structure group being SL(2, & Copf;) x ON\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textrm{O}\left(\mathcal{N}\right) $$\end{document}. Here we explain how the two frameworks are related. We give two explicit realisations of AdS44N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\textrm{AdS}}<^>{4\left|4\mathcal{N}\right.} $$\end{document} as a conformally flat superspace, thus extending the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 and N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 results available in the literature. As applications, we describe: (i) a two-parameter deformation of the AdS44N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\textrm{AdS}}<^>{4\left|4\mathcal{N}\right. } $$\end{document} interval and the corresponding superparticle model; (ii) some implications of conformal flatness for superconformal higher-spin multiplets and an effective action generating the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 super-Weyl anomaly; and (iii) kappa-symmetry of the massless AdS superparticle.
引用
收藏
页数:31
相关论文
共 79 条
  • [1] Akulov V. P., 1974, Theoretical and Mathematical Physics, V18, P28, DOI 10.1007/BF01036922
  • [2] [Anonymous], 1951, The Topology of Fibre Bundle
  • [3] Bandos I, 2002, J HIGH ENERGY PHYS
  • [4] OSp supergroup manifolds, superparticles, and supertwistors
    Bandos, I
    Lukierski, J
    Preitschopf, C
    Sorokin, D
    [J]. PHYSICAL REVIEW D, 2000, 61 (06):
  • [5] Superparticle models with tensorial central charges
    Bandos, I
    Lukierski, J
    Sorokin, D
    [J]. PHYSICAL REVIEW D, 2000, 61 (04):
  • [6] Bandos I.A., 2024, Handbook of quantum gravity, DOI [10.1007/978-981-19-3079-9111-1, DOI 10.1007/978-981-19-3079-9111-1]
  • [7] Classification of Simple Lie Superalgebras in Characteristic 2
    Bouarroudj, Sofiane
    Lebedev, Alexei
    Leites, Dimitry
    Shchepochkina, Irina
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (01) : 54 - 94
  • [8] Buchbinder I.L., 1998, Ideas and methods of supersymmetry and supergravity or a walk through superspace
  • [9] Butter D, 2020, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2020)029
  • [10] Invariants for minimal conformal supergravity in six dimensions
    Butter, Daniel
    Kuzenko, Sergei M.
    Novak, Joseph
    Theisen, Stefan
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2016, (12):