On Formal Solutions to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ q $\end{document}-Difference Equations Containing Logarithms

被引:0
作者
N. V. Gaianov [1 ]
A. V. Parusnikova [1 ]
机构
[1] HSE University,
关键词
asymptotic expansion; -difference equation; Dulac series; 517.529.8:527.928.1;
D O I
10.1134/S0037446624050082
中图分类号
学科分类号
摘要
We derive a special form of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ q $\end{document}-difference equations whose solutions exist in the form of a Dulac series. We find the coefficients of the Dulac series from some algebraic difference equations having a polynomial solution under appropriate conditions. An example is given of a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ q $\end{document}-difference equation which demonstrates the lack of upper bounds for the degrees of these polynomial solutions. We provide an upper bound for the degrees of the polynomial coefficients in terms of the coefficient degrees of the initial segment of the Dulac series. We also give some examples of calculating the expansions of solutions to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ q $\end{document}-difference equations in the form of Dulac series.
引用
收藏
页码:1062 / 1073
页数:11
相关论文
共 20 条
[1]  
Bruno AD(2004)Asymptotic behaviour and expansions of solutions of an ordinary differential equation Russian Math. Surveys 59 429-480
[2]  
Dragovic V(2020)Polygons of Petrovic and Fine, algebraic ODEs, and contemporary mathematics Arch. Hist. Exact Sci. 74 523-564
[3]  
Goryuchkina I(2022)Power series solutions of non-linear Qual. Theory Dyn. Syst. 21 641-642
[4]  
Cano J(2022)-difference equations and the Newton–Puiseux polygon Aequationes Math. 96 579-597
[5]  
Fortuny Ayuso P(2021)On the convergence of generalized power series solutions of Russian Math. Surveys 76 389-460
[6]  
Gontsov R(2011)-difference equations Dokl. Math. 83 348-352
[7]  
Goryuchkina I(2019)Analytic moduli for parabolic Dulac germs Sb. Math. 210 1207-1221
[8]  
Lastra A(1989)Local expansions of solutions to the fifth Painlevé equation Asymptot. Anal. 2 1-4
[9]  
Mardešić P(1994)Convergence of formal Dulac series satisfying an algebraic ordinary differential equation J. Symbolic Comput. 339 732-735
[10]  
Resman M(2014)Sur le théorème de Maillet J. Symbolic Comput. 60 15-28