Database of Nonaqueous Proton-Conducting Materials

被引:0
|
作者
Cassady, Harrison J. [1 ,2 ]
Martin, Emeline [1 ,3 ]
Liu, Yifan [4 ]
Bhattacharya, Debjyoti [5 ]
Rochow, Maria F. [1 ]
Dyer, Brock A. [6 ]
Reinhart, Wesley F. [5 ,7 ]
Cooper, Valentino R. [4 ]
Hickner, Michael A. [1 ]
机构
[1] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA
[2] Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA
[3] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[4] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[5] Penn State Univ, Mat Sci & Engn, University Pk, PA 16802 USA
[6] Ursinus Coll, Dept Phys & Astron, Collegeville, PA 19426 USA
[7] Penn State Univ, Inst Computat & Data Sci, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
small molecules; proton conductivity; !text type='Python']Python[!/text; database; nonaqueous molecules; imidazole; acid-doped; proton exchange membrane; ACID DOPED POLYBENZIMIDAZOLE; IONIC LIQUIDS; PHOSPHONIC ACID; PHYSICOCHEMICAL PROPERTIES; INTERMEDIATE TEMPERATURE; POLYMER ELECTROLYTES; TRANSPORT-PROPERTIES; PROTOGENIC GROUP; IMIDAZOLE; 1H-1,2,4-TRIAZOLE;
D O I
10.1021/acsami.4c22618
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This work presents the assembly of 48 papers, representing 74 different compounds and blends, into a machine-readable database of nonaqueous proton-conducting materials. SMILES was used to encode the chemical structures of the molecules, and we tabulated the reported proton conductivity, proton diffusion coefficient, and material composition for a total of 3152 data points. The data spans a broad range of temperatures ranging from -70 to 260 degrees C. To explore this landscape of nonaqueous proton conductors, DFT was used to calculate the proton affinity of 18 unique proton carriers. The results were then compared to the activation energy derived from fitting experimental data to the Arrhenius equation. It was found that while the widely recognized positive correlation between the activation energy and proton affinity may hold among closely related molecules, this correlation does not necessarily apply across a broader range of molecules. This work serves as an example of the potential analyses that can be conducted using literature data combined with emerging research tools in computation and data science to address specific materials design problems.
引用
收藏
页码:16901 / 16908
页数:8
相关论文
共 50 条
  • [31] Proton-conducting amino acid-modified chitosan nanofibers for nanocomposite proton exchange membranes
    Wang, Shubo
    Shi, Lei
    Zhang, Shuo
    Wang, Hang
    Cheng, Bowen
    Zhuang, Xupin
    Li, Zhenhuan
    EUROPEAN POLYMER JOURNAL, 2019, 119 : 327 - 334
  • [32] New proton conducting materials for technical applications: What can we learn from solid state NMR studies?
    Graf, Robert
    SOLID STATE NUCLEAR MAGNETIC RESONANCE, 2011, 40 (04) : 127 - 133
  • [33] Emerging computational and machine learning methodologies for proton-conducting oxides: materials discovery and fundamental understanding
    Fujii, Susumu
    Hyodo, Junji
    Shitara, Kazuki
    Kuwabara, Akihide
    Kasamatsu, Shusuke
    Yamazaki, Yoshihiro
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2024, 25 (01)
  • [34] Perfluorinated Proton-Conducting Membrane Composites with Functionalized Nanodiamonds
    O. N. Primachenko
    Yu. V. Kulvelis
    V. T. Lebedev
    A. S. Odinokov
    V. Yu. Bayramukov
    E. A. Marinenko
    I. V. Gofman
    A. V. Shvidchenko
    A. Ya. Vul
    S. S. Ivanchev
    Membranes and Membrane Technologies, 2020, 2 : 1 - 9
  • [35] Asymmetric Sol-gel Proton-conducting Membrane
    Radovanovic, P.
    Kellner, M.
    Matovic, J.
    Liska, R.
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON MULTI-MATERIAL MICRO MANUFACTURE (4M 2011), 2011, : 230 - 233
  • [36] Sulfophenylation of polysulfones for proton-conducting fuel cell membranes
    Lafitte, B
    Karlsson, LE
    Jannasch, P
    MACROMOLECULAR RAPID COMMUNICATIONS, 2002, 23 (15) : 896 - 900
  • [37] Local structure and hydrogen bond characteristics of imidazole molecules for proton conduction in acid and base proton-conducting composite materials
    Hori, Yuta
    Chikai, Takuma
    Ida, Tomonori
    Mizuno, Motohiro
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (15) : 10311 - 10318
  • [38] High proton-conducting monolithic phosphosilicate glass membranes
    Li, Haibin
    Jin, Dongliang
    Kong, Xiangyang
    Tu, Hengyong
    Yu, Qingchun
    Jiang, Fengjing
    MICROPOROUS AND MESOPOROUS MATERIALS, 2011, 138 (1-3) : 63 - 67
  • [39] Novel proton-conducting nanocomposites for hydrogen separation membranes
    Sadykov, V. A.
    Bespalko, Yu. N.
    Krasnov, A. V.
    Skriabin, P. I.
    Lukashevich, A. I.
    Fedorova, Yu. E.
    Sadovskaya, E. M.
    Eremeev, N. F.
    Krieger, T. A.
    Ishchenko, A. V.
    Belyaev, V. D.
    Uvarov, N. F.
    Ulihin, A. S.
    Skovorodin, I. N.
    SOLID STATE IONICS, 2018, 322 : 69 - 78
  • [40] Conductivity and Intermolecular Interactions in Proton-Conducting Gel Electrolytes
    Shmukler, Liudmila E.
    Nguyen Van Thuc
    Fadeeva, Yulia A.
    Safonova, Liubov P.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2014, 131 (17) : 8460 - 8467