Approximation behavior of parametrically generalized Baskakov-Stancu operators

被引:0
作者
Sonker, Smita [1 ,2 ]
Moond, Priyanka [1 ]
机构
[1] Natl Inst Technol Kurukshetra, Dept Math, Kurukshetra 136119, Haryana, India
[2] Jawaharlal Nehru Univ, Sch Phys Sci, New Delhi 110067, India
关键词
Baskakov operators; Unified Ditzian Totik modulus; Weighted modulus of continuity; Statistical convergence; STATISTICAL APPROXIMATION;
D O I
10.1007/s12215-024-01137-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present work, we consider Stancu variant of a parametrically generalized Baskakov operator. We discuss the error of appoximation of these operators by means of unified Ditzian Totik modulus of smoothness and various moduli of continuity like modulus of continuity of second order and weighted modulus of continuity. Also, we study the statistical convergence of newly defined operators. Some numerical examples illustrating the error functions for varying Stancu parameters and the approximation by proposed operators are also given using MATLAB programming.
引用
收藏
页数:17
相关论文
共 23 条
[1]   Approximation properties of generalized Baskakov operators [J].
Agrawal, Purshottam Narain ;
Baxhaku, Behar ;
Kumar, Abhishek .
AIMS MATHEMATICS, 2021, 6 (07) :6986-7016
[2]  
Altomare F, 1994, Korovkin-type approximation theory and its applications, V17
[3]  
Aral A, 2019, MATH COMMUN, V24, P119
[4]  
Costarelli D, 2022, DOLOMIT RES NOTES AP, V15, P128
[5]   On the convergence properties of sampling Durrmeyer-type operators in Orlicz spaces [J].
Costarelli, Danilo ;
Piconi, Michele ;
Vinti, Gianluca .
MATHEMATISCHE NACHRICHTEN, 2023, 296 (02) :588-609
[6]  
DeVore RA., 1993, Ann. Mat. Pura. Appl, V303, P321
[7]  
Ditzian Z., Moduli of Smoothness, P10
[8]   Statistical approximation by positive linear operators [J].
Duman, O ;
Orhan, C .
STUDIA MATHEMATICA, 2004, 161 (02) :187-197
[9]  
Erkus E., Applied mathematics and computation
[10]  
Gupta V., 2012, J. Egyptian Math. Soc, V20, P183, DOI [10.1016/j.joems.2012.07.001, DOI 10.1016/J.JOEMS.2012.07.001]