Finite-State Machines for Horospheres in Hyperbolic Right-Angled Coxeter Groups

被引:0
作者
Jillson, Noah [1 ]
Levitin, Daniel [1 ]
Saldin, Pramana [1 ]
Stuopis, Katerina [1 ]
Wang, Qianruixi [1 ]
Xue, Kaicheng [1 ]
机构
[1] Univ Wisconsin Madison, Madison, WI 53703 USA
基金
美国国家科学基金会;
关键词
Hyperbolic groups; Right-angled Coxeter groups; Horospheres; Finite-state machines; Algorithms;
D O I
10.1007/s10711-024-00977-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Relatively little is known about the discrete horospheres in hyperbolic groups, even in simple settings. In this paper we work with hyperbolic one-ended right-angled Coxeter groups and describe two graph structures that mimic the intrinsic metric on a classical horosphere: the Rips graph and the divergence graph (the latter due to Cohen, Goodman-Strauss, and Rieck (Ergodic Theory and Dynamical Systems 42(9):2740-2783, 2022)). We develop, analyze, and implement algorithms based on finite-state machines that draw large finite portions of these graphs, and deduce various geometric corollaries about the path metrics induced by these graph structures.
引用
收藏
页数:51
相关论文
共 22 条
[1]   Geodesic growth in right-angled and even Coxeter groups [J].
Antolin, Yago ;
Ciobanu, Laura .
EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (05) :859-874
[2]  
Bridson M. R., 1999, Metric Spaces of Non-Positive Curvature, DOI DOI 10.1007/978-3-662-12494-9
[3]   A FINITENESS PROPERTY AND AN AUTOMATIC STRUCTURE FOR COXETER GROUPS [J].
BRINK, B ;
HOWLETT, RB .
MATHEMATISCHE ANNALEN, 1993, 296 (01) :179-190
[4]   Strongly aperiodic subshifts of finite type on hyperbolic groups [J].
Cohen, David B. ;
Goodman-Strauss, Chaim ;
Rieck, Yo'av .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, :2740-2783
[5]   PATTERSON-SULLIVAN MEASUREMENTS ON THE BOUNDARY OF A GROMOV HYPERBOLIC SPACE [J].
COORNAERT, M .
PACIFIC JOURNAL OF MATHEMATICS, 1993, 159 (02) :241-270
[6]   Commensurability for certain right-angled Coxeter groups and geometric amalgams of free groups [J].
Dani, Pallavi ;
Stark, Emily ;
Thomas, Anne .
GROUPS GEOMETRY AND DYNAMICS, 2018, 12 (04) :1273-1341
[7]   Bowditch's JS']JSJ tree and the quasi-isometry classification of certain Coxeter groups [J].
Dani, Pallavi ;
Thomas, Anne .
JOURNAL OF TOPOLOGY, 2017, 10 (04) :1066-1106
[8]  
Davis M. W., 2008, LONDON MATH SOC MONO, V32
[9]   Quasi-isometries for certain right-angled Coxeter groups [J].
Edletzberger, Alexandra .
GROUPS GEOMETRY AND DYNAMICS, 2024, 18 (03) :1037-1098
[10]  
EPSTEIN DBA, 1992, WORD PROCESSING GROU