Orbit Spaces of Equivariantly Formal Torus Actions of Complexity OneOrbit spaces of equivariantly formal torus actions of complexity oneA. Ayzenberg, M. Masuda
被引:0
作者:
Anton Ayzenberg
论文数: 0引用数: 0
h-index: 0
机构:
National Research University Higher School of Economics,Faculty of Computer ScienceNational Research University Higher School of Economics,Faculty of Computer Science
Anton Ayzenberg
[1
]
Mikiya Masuda
论文数: 0引用数: 0
h-index: 0
机构:
Russian Federation,undefinedNational Research University Higher School of Economics,Faculty of Computer Science
Mikiya Masuda
[2
]
机构:
[1] National Research University Higher School of Economics,Faculty of Computer Science
[2] Russian Federation,undefined
[3] Neapolis University Pafos,undefined
[4] Osaka City University Advanced Mathematical Institute,undefined
Let a compact torus T=Tn-1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T=T^{n-1}$$\end{document} act on an orientable smooth compact manifold X=X2n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X=X^{2n}$$\end{document} effectively, with nonempty finite set of fixed points, and suppose that stabilizers of all points are connected. If Hodd(X)=0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H^{odd}(X)=0$$\end{document} and the weights of tangent representation at each fixed point are in general position, we prove that the orbit space Q=X/T\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q=X/T$$\end{document} is a homology (n+1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(n+1)$$\end{document}-sphere. If, in addition, π1(X)=0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pi _1(X)=0$$\end{document}, then Q is homeomorphic to Sn+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S^{n+1}$$\end{document}. We introduce the notion of j-generality of tangent weights of torus action. For any action of Tk\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T^k$$\end{document} on X2n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$X^{2n}$$\end{document} with isolated fixed points and Hodd(X)=0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H^{odd}(X)=0$$\end{document}, we prove that j-generality of weights implies (j+1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(j+1)$$\end{document}-acyclicity of the orbit space Q. This statement generalizes several known results for actions of complexity zero and one. In complexity one, we give a criterion of equivariant formality in terms of the orbit space. In this case, we give a formula expressing Betti numbers of a manifold in terms of certain combinatorial structure that sits in the orbit space.