Radiomics in radiology: What the radiologist needs to know about technical aspects and clinical impact

被引:2
作者
Ferrari, Riccardo [1 ]
Trinci, Margherita [2 ]
Casinelli, Alice [3 ]
Treballi, Francesca [4 ]
Leone, Edoardo [1 ]
Caruso, Damiano [5 ]
Polici, Michela [5 ]
Faggioni, Lorenzo [6 ]
Neri, Emanuele [6 ]
Galluzzo, Michele [1 ]
机构
[1] San Camillo Forlanini Hosp, Emergency Radiol Dept, Rome, Italy
[2] Dipartimento Radiol, Orbetello, Grosseto, Italy
[3] Sandro Pertini Hosp, Diagnost Imaging Dept, Rome, Italy
[4] Careggi Univ Hosp, Dept Radiol, Florence, Italy
[5] Sapienza Univ Rome, St Andrea Univ Hosp, Dept Med Surg Sci & Translat Med, Radiol Unit, I-00189 Rome, Italy
[6] Univ Pisa, Dept Translat Res & New Technol Med & Surg, Pisa, Italy
来源
RADIOLOGIA MEDICA | 2024年 / 129卷 / 12期
基金
英国科研创新办公室;
关键词
Radiology; Radiomics; Abdominal imaging; Artificial Intelligence; New technologies in radiology; Diagnostic radiology; LUNG-CANCER; ARTIFICIAL-INTELLIGENCE; FEATURES; PREDICT; REPRODUCIBILITY; ONCOLOGY; IMAGES; TOOL;
D O I
10.1007/s11547-024-01904-w
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Radiomics represents the science of extracting and analyzing a multitude of quantitative features from medical imaging, revealing the quantitative potential of radiologic images. This scientific review aims to provide radiologists with a comprehensive understanding of radiomics, emphasizing its principles, applications, challenges, limits, and prospects. The limitations of standardization in current scientific production are analyzed, along with possible solutions proposed by some of the referenced papers. As the continuous evolution of medical imaging is ongoing, radiologists must be aware of new perspectives to play a central role in patient management.
引用
收藏
页码:1751 / 1765
页数:15
相关论文
共 150 条
  • [1] Interpretation of radiomics features-A pictorial review
    Ardakani, Ali Abbasian
    Bureau, Nathalie J.
    Ciaccio, Edward J.
    Acharya, U. Rajendra
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 215
  • [2] Artificial intelligence and radiomics in pulmonary nodule management: current status and future applications
    Ather, S.
    Kadir, T.
    Gleeson, F.
    [J]. CLINICAL RADIOLOGY, 2020, 75 (01) : 13 - 19
  • [3] Radiomics-based prediction of two-year clinical outcome in locally advanced cervical cancer patients undergoing neoadjuvant chemoradiotherapy
    Autorino, Rosa
    Gui, Benedetta
    Panza, Giulia
    Boldrini, Luca
    Cusumano, Davide
    Russo, Luca
    Nardangeli, Alessia
    Persiani, Salvatore
    Campitelli, Maura
    Ferrandina, Gabriella
    Macchia, Gabriella
    Valentini, Vincenzo
    Gambacorta, Maria Antonietta
    Manfredi, Riccardo
    [J]. RADIOLOGIA MEDICA, 2022, 127 (05): : 498 - 506
  • [4] Non-contrast Cine Cardiac Magnetic Resonance image radiomics features and machine learning algorithms for myocardial infarction detection
    Avard, Elham
    Shiri, Isaac
    Hajianfar, Ghasem
    Abdollahi, Hamid
    Kalantari, Kiara Rezaei
    Houshmand, Golnaz
    Kasani, Kianosh
    Bitarafan-rajabi, Ahmad
    Deevband, Mohammad Reza
    Oveisi, Mehrdad
    Zaidi, Habib
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 141
  • [5] Radiomics in CT and MR imaging of the liver and pancreas: tools with potential for clinical application
    Berbis, M. Alvaro
    Godino, Felix Paulano
    Rodriguez-Comas, Julia
    Nava, Enrique
    Garcia-Figueiras, Roberto
    Baleato-Gonzalez, Sandra
    Luna, Antonio
    [J]. ABDOMINAL RADIOLOGY, 2024, 49 (01) : 322 - 340
  • [6] Reproducibility of CT radiomic features in lung neuroendocrine tumours (NETs) patients: analysis in a heterogeneous population
    Bicci, Eleonora
    Cozzi, Diletta
    Cavigli, Edoardo
    Ruzga, Ron
    Bertelli, Elena
    Danti, Ginevra
    Bettarini, Silvia
    Tortoli, Paolo
    Mazzoni, Lorenzo Nicola
    Busoni, Simone
    Miele, Vittorio
    [J]. RADIOLOGIA MEDICA, 2023, 128 (02): : 203 - 211
  • [7] Application of artificial intelligence radiomics in the diagnosis, treatment, and prognosis of hepatocellular carcinoma
    Bo Z.
    Song J.
    He Q.
    Chen B.
    Chen Z.
    Xie X.
    Shu D.
    Chen K.
    Wang Y.
    Chen G.
    [J]. Computers in Biology and Medicine, 2024, 173
  • [8] Radiomic Features of Multiparametric MRI Present Stable Associations With Analogous Histological Features in Patients With Brain Cancer
    Bobholz, Samuel A.
    Lowman, Allison K.
    Barrington, Alexander
    Brehler, Michael
    McGarry, Sean
    Cochran, Elizabeth J.
    Connelly, Jennifer
    Mueller, Wade M.
    Agarwal, Mohit
    O'Neill, Darren
    Nencka, Andrew S.
    Banerjee, Anjishnu
    LaViolette, Peter S.
    [J]. TOMOGRAPHY, 2020, 6 (02) : 160 - 169
  • [9] Radiogenomics: bridging imaging and genomics
    Bodalal, Zuhir
    Trebeschi, Stefano
    Nguyen-Kim, Thi Dan Linh
    Schats, Winnie
    Beets-Tan, Regina
    [J]. ABDOMINAL RADIOLOGY, 2019, 44 (06) : 1960 - 1984
  • [10] Improved outcome prediction of oropharyngeal cancer by combining clinical and MRI features in machine learning models
    Bos, Paula
    van den Brekel, Michiel W. M.
    Gouw, Zeno A. R.
    Al-Mamgani, Abrahim
    Taghavi, Marjaneh
    Waktola, Selam
    Aerts, Hugo J. W. L.
    Castelijns, Jonas A.
    Beets-Tan, Regina G. H.
    Jasperse, Bas
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2021, 139