Decoding pan-cancer treatment outcomes using multimodal real-world data and explainable artificial intelligence

被引:0
作者
Keyl, Julius [1 ,2 ]
Keyl, Philipp [3 ,4 ]
Montavon, Gregoire [4 ,5 ,6 ]
Hosch, Rene [1 ]
Brehmer, Alexander [1 ]
Mochmann, Liliana [3 ]
Jurmeister, Philipp [3 ]
Dernbach, Gabriel [5 ]
Kim, Moon [1 ]
Koitka, Sven [1 ,7 ]
Bauer, Sebastian [8 ,9 ,10 ,11 ]
Bechrakis, Nikolaos [9 ,10 ,11 ,12 ]
Forsting, Michael [7 ,9 ,11 ]
Fuehrer-Sakel, Dagmar [9 ,10 ,13 ]
Glas, Martin [9 ,10 ,11 ,14 ,15 ]
Gruenwald, Viktor [8 ,9 ,10 ,11 ,16 ]
Hadaschik, Boris [9 ,10 ,11 ,16 ]
Haubold, Johannes [7 ,9 ]
Herrmann, Ken [9 ,10 ,11 ,17 ]
Kasper, Stefan [8 ,9 ,10 ,11 ]
Kimmig, Rainer [9 ,10 ,18 ]
Lang, Stephan [9 ,19 ]
Rassaf, Tienush [9 ,20 ]
Roesch, Alexander [9 ,10 ,11 ,21 ]
Schadendorf, Dirk [9 ,10 ,11 ,21 ,22 ]
Siveke, Jens T. [8 ,9 ,10 ,11 ,23 ,24 ,25 ]
Stuschke, Martin [9 ,10 ,11 ,26 ]
Sure, Ulrich [9 ,10 ,11 ,27 ]
Totzeck, Matthias [9 ,20 ]
Welt, Anja [8 ,9 ,10 ]
Wiesweg, Marcel [8 ,9 ,10 ,11 ]
Baba, Hideo A. [2 ,9 ]
Nensa, Felix [1 ,7 ,9 ,11 ]
Egger, Jan [1 ]
Mueller, Klaus-Robert [4 ,5 ,28 ,29 ]
Schuler, Martin [8 ,9 ,10 ,11 ]
Klauschen, Frederick [3 ,4 ,30 ,31 ,32 ]
Kleesiek, Jens [1 ,9 ,10 ,11 ]
机构
[1] Univ Hosp Essen AoR, Inst Artificial Intelligence Med, Essen, Germany
[2] Univ Hosp Essen AoR, Inst Pathol, Essen, Germany
[3] Ludwig Maximilians Univ Munchen, Inst Pathol, Munich, Germany
[4] BIFOLD Berlin Inst Fdn Learning & Data, Berlin, Germany
[5] Tech Univ Berlin, Machine Learning Grp, Berlin, Germany
[6] Free Univ Berlin, Dept Math & Comp Sci, Berlin, Germany
[7] Univ Hosp Essen AoR, Inst Diagnost & Intervent Radiol & Neuroradiol, Essen, Germany
[8] Univ Hosp Essen AoR, Dept Med Oncol, Essen, Germany
[9] Univ Duisburg Essen, Fac Med, Essen, Germany
[10] Univ Hosp Essen AoR, West German Canc Ctr, Essen, Germany
[11] Univ Hosp Essen AoR, German Canc Consortium DKTK, Partner Site, Essen, Germany
[12] Univ Hosp Essen AoR, Dept Nuclearmedicine, D-45147 Essen, Germany
[13] Univ Hosp Essen AoR, Dept Endocrinol Diabet & Metab, Essen, Germany
[14] Univ Duisburg Essen, Dept Neurol, Div Clin Neurooncol, Essen, Germany
[15] Univ Duisburg Essen, Univ Med Essen, Ctr Translat Neuroand Behav Sci C TNBS, Essen, Germany
[16] Univ Hosp Essen AoR, Dept Urol, Essen, Germany
[17] Univ Hosp Essen AoR, Dept Nucl Med, Essen, Germany
[18] Univ Hosp Essen AoR, Dept Gynecol & Obstet, Essen, Germany
[19] Univ Hosp Essen AoR, Dept Endocrinol & Metab, Essen, Germany
[20] Univ Hosp Essen AoR, West German Heart & Vasc Ctr Essen, Dept Cardiol & Vasc Med, Essen, Germany
[21] Univ Hosp Essen AoR, Dept Dermatol, D-45147 Essen, Germany
[22] Univ Duisburg Essen, Res Ctr One Hlth, Res Alliance Ruhr, Essen, Germany
[23] Univ Duisburg Essen, Univ Hosp Essen AoR, Bridge Inst Expt Tumor Therapy, West German Canc Ctr, Essen, Germany
[24] German Canc Consortium DKTK, Div Solid Tumor Translat Oncol, Partner Site Essen, Heidelberg, Germany
[25] German Canc Res Ctr, DKFZ, Heidelberg, Germany
[26] Univ Hosp Essen AoR, Dept Radiotherapy, Essen, Germany
[27] Univ Hosp Essen AoR, Dept Neurosurg & Spine Surg, Essen, Germany
[28] Korea Univ, Dept Artificial Intelligence, Seoul, South Korea
[29] MPI Informat, Saarbrucken, Germany
[30] German Canc Consortium DKTK, German Canc Res Ctr DKFZ, Berlin Partner Site, Berlin, Germany
[31] German Canc Consortium DKTK, German Canc Res Ctr DKFZ, Munich Partner Site, Munich, Germany
[32] Bavarian Canc Res Ctr BZKF, Erlangen, Germany
关键词
PANCREATIC-CANCER; PROGNOSTIC-FACTOR; NEURAL-NETWORKS; SURVIVAL;
D O I
10.1038/s43018-024-00891-1
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Despite advances in precision oncology, clinical decision-making still relies on limited variables and expert knowledge. To address this limitation, we combined multimodal real-world data and explainable artificial intelligence (xAI) to introduce AI-derived (AID) markers for clinical decision support. We used xAI to decode the outcome of 15,726 patients across 38 solid cancer entities based on 350 markers, including clinical records, image-derived body compositions, and mutational tumor profiles. xAI determined the prognostic contribution of each clinical marker at the patient level and identified 114 key markers that accounted for 90% of the neural network's decision process. Moreover, xAI enabled us to uncover 1,373 prognostic interactions between markers. Our approach was validated in an independent cohort of 3,288 patients with lung cancer from a US nationwide electronic health record-derived database. These results show the potential of xAI to transform the assessment of clinical variables and enable personalized, data-driven cancer care.
引用
收藏
页码:307 / 322
页数:32
相关论文
共 64 条
  • [1] Multimodal biomedical AI
    Acosta, Julian N.
    Falcone, Guido J.
    Rajpurkar, Pranav
    Topol, Eric J.
    [J]. NATURE MEDICINE, 2022, 28 (09) : 1773 - 1784
  • [2] LDH correlation with survival in advanced melanoma from two large, randomised trials (Oblimersen GM301 and EORTC 18951)
    Agarwala, Sanjiv S.
    Keilholz, Ulrich
    Gilles, Erard
    Bedikian, Agop Y.
    Wu, Jane
    Kay, Richard
    Stein, Cy A.
    Itri, Loretta M.
    Suciu, Stefan
    Eggermont, Alexander M. M.
    [J]. EUROPEAN JOURNAL OF CANCER, 2009, 45 (10) : 1807 - 1814
  • [3] Relationship among circulating tumor cells, CEA and overall survival in patients with metastatic colorectal cancer
    Aggarwal, C.
    Meropol, N. J.
    Punt, C. J.
    Iannotti, N.
    Saidman, B. H.
    Sabbath, K. D.
    Gabrail, N. Y.
    Picus, J.
    Morse, M. A.
    Mitchell, E.
    Miller, M. C.
    Cohen, S. J.
    [J]. ANNALS OF ONCOLOGY, 2013, 24 (02) : 420 - 428
  • [4] On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
    Bach, Sebastian
    Binder, Alexander
    Montavon, Gregoire
    Klauschen, Frederick
    Mueller, Klaus-Robert
    Samek, Wojciech
    [J]. PLOS ONE, 2015, 10 (07):
  • [5] Fitting Linear Mixed-Effects Models Using lme4
    Bates, Douglas
    Maechler, Martin
    Bolker, Benjamin M.
    Walker, Steven C.
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2015, 67 (01): : 1 - 48
  • [6] Bender D, 2013, COMP MED SY, P326, DOI 10.1109/CBMS.2013.6627810
  • [7] Survival and New Prognosticators in Metastatic Seminoma: Results From the IGCCCG-Update Consortium
    Beyer, Jorg
    Collette, Laurence
    Sauve, Nicolas
    Daugaard, Gedske
    Feldman, Darren R.
    Tandstad, Torgrim
    Tryakin, Alexey
    Stahl, Olof
    Gonzalez-Billalabeitia, Enrique
    De Giorgi, Ugo
    Culine, Stephane
    de Wit, Ronald
    Hansen, Aaron R.
    Bebek, Marko
    Terbuch, Angelika
    Albany, Costantine
    Hentrich, Marcus
    Gietema, Jourik A.
    Negaard, Helene
    Huddart, Robert A.
    Lorch, Anja
    Cafferty, Fay H.
    Heng, Daniel Y. C.
    Sweeney, Christopher J.
    Winquist, Eric
    Chovanec, Michal
    Fankhauser, Christian
    Stark, Daniel
    Grimison, Peter
    Necchi, Andrea
    Tran, Ben
    Heidenreich, Axel
    Shamash, Jonathan
    Sternberg, Cora N.
    Vaughn, David J.
    Duran, Ignacio
    Bokemeyer, Carsten
    Patrikidou, Anna
    Cathomas, Richard
    Assele, Samson
    Gillessen, Silke
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2021, 39 (14) : 1553 - +
  • [8] Birnbaum B, 2020, Arxiv, DOI arXiv:2001.09765
  • [9] Prognostic factors for progression-free and overall survival in advanced biliary tract cancer
    Bridgewater, J.
    Lopes, A.
    Wasan, H.
    Malka, D.
    Jensen, L.
    Okusaka, T.
    Knox, J.
    Wagner, D.
    Cunningham, D.
    Shannon, J.
    Goldstein, D.
    Moehler, M.
    Bekaii-Saab, T.
    McNamara, M. G.
    Valle, J. W.
    [J]. ANNALS OF ONCOLOGY, 2016, 27 (01) : 134 - 140
  • [10] Preoperative low tri-iodothyronine concentration is associated with worse health status and shorter five year survival of primary brain tumor patients
    Bunevicius, Adomas
    Deltuva, Vytenis Pranas
    Tamasauskas, Sarunas
    Smith, Timothy
    Laws, Edward R.
    Bunevicius, Robertas
    Iervasi, Giorgio
    Tamasauskas, Arimantas
    [J]. ONCOTARGET, 2017, 8 (05) : 8648 - 8656