Dynamics and numerical analysis of a fractional-order toxoplasmosis model incorporating human and cat populations

被引:1
|
作者
Adel, Waleed [1 ,10 ]
Srivastava, Hari Mohan [2 ,3 ,4 ,5 ,6 ,7 ]
Izadi, Mohammad [8 ]
Elsonbaty, Amr [9 ,10 ]
El-Mesady, A. [11 ]
机构
[1] Univ Francaise Egypte, Lab Interdisciplinaire Univ Francaise Egypte UFEID, Cairo 11837, Egypt
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40447, Taiwan
[4] Kyung Hee Univ, Ctr Converging Humanities, 26 Kyungheedae Ro, Seoul 02447, South Korea
[5] Chung Yuan Christian Univ, Dept Biomed Engn, Taoyuan City 320314, Taiwan
[6] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan
[7] Int Telemat Univ Uninettuno, Sect Math, Corso Vittorio Emanuele II 39, I-00186 Rome, Italy
[8] Shahid Bahonar Univ Kerman, Fac Math & Comp, Dept Appl Math, Kerman 7616914111, Iran
[9] Prince Sattam bin Abdulaziz Univ, Coll Sci & Humanities, Dept Math, Al Kharj 11942, Saudi Arabia
[10] Mansoura Univ, Fac Engn, Dept Math & Engn Phys, Mansoura 35516, Egypt
[11] Menoufia Univ, Fac Elect Engn, Dept Phys & Engn Math, Menoufia 32952, Egypt
来源
BOUNDARY VALUE PROBLEMS | 2024年 / 2024卷 / 01期
关键词
Liouville-Caputo fractional derivative; Collocation points; Narayana polynomials; Equilibrium points; Stability analysis; Quasilinearization method; TRANSMISSION; GONDII;
D O I
10.1186/s13661-024-01965-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Toxoplasmosis is a significant zoonotic disease that poses risks to public health and animal health, making the understanding of its transmission dynamics crucial. In this study, we present a novel fractional-order model that captures complex interactions among human, cat, and mouse populations, providing deeper insights into the disease spread and control. We utilize mathematical techniques to analyze the model properties, including the existence, uniqueness, positivity, and boundedness of solutions, along with stability analysis of the equilibrium states. The basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_{0}$\end{document} is derived, revealing the threshold for potential outbreaks. Our findings indicate that key parameters significantly influence the dynamics of toxoplasmosis, with implications for targeted intervention strategies. We propose the QLM-FONP numerical scheme for efficient resolution of the model and provide a comprehensive convergence analysis, demonstrating the reliability of the numerical solutions. The results confirm the effectiveness of our approach, illustrating that the proposed model not only offers accurate predictions but also extends beyond previous efforts in the literature by incorporating fractional-order dynamics, which better reflect real-world transmission processes. Overall, this study enhances the understanding of toxoplasmosis transmission and informs future research and control efforts.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Dynamics and numerical investigations of a fractional-order model of toxoplasmosis in the population of human and cats
    Zafar, Zain Ul Abadin
    Ali, Nigar
    Baleanu, Dumitru
    CHAOS SOLITONS & FRACTALS, 2021, 151
  • [2] Dynamics of a model of Toxoplasmosis disease in human and cat populations
    Gonzalez-Parra, Gilberto C.
    Arenas, Abraham J.
    Aranda, Diego F.
    Villanueva, Rafael J.
    Jodar, Lucas
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (10) : 1692 - 1700
  • [3] Numerical analysis of fractional-order tumor model
    Sohail, Ayesha
    Arshad, Sadia
    Javed, Sana
    Maqbool, Khadija
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2015, 8 (05)
  • [4] Modeling and analysis of a fractional-order nonlinear epidemic model incorporating the compartments of infodemic and aware populations
    Kumar, Abhishek
    Goel, Kanica
    PHYSICA SCRIPTA, 2023, 98 (09)
  • [5] Dynamics of a model of Toxoplasmosis disease in cat and human with varying size populations
    Pei Yongzhen
    Ji Xuehui
    Li Changguo
    Gao Shujing
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2018, 144 : 52 - 59
  • [6] Dynamics analysis of a predator-prey fractional-order model incorporating predator cannibalism and refuge
    Rayungsari, Maya
    Suryanto, Agus
    Kusumawinahyu, Wuryansari Muharini
    Darti, Isnani
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2023, 9
  • [7] Dynamics of an arbitrary order model of toxoplasmosis ailment in human and cat inhabitants
    Zafar, Zain Ul Abadin
    Tunc, Cemil
    Ali, Nigar
    Zaman, Gul
    Thounthong, Phatiphat
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2021, 15 (01): : 882 - 896
  • [8] DYNAMICS OF FRACTIONAL-ORDER PREDATOR-PREY MODEL INCORPORATING TWO DELAYS
    Zhao, Lingzhi
    Huang, Chengdai
    Cao, Jinde
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (01)
  • [9] Fractional-order dynamics of human papillomavirus
    Zafar, Zain Ul Abadin
    Hussain, M. T.
    Inc, Mustafa
    Baleanu, Dumitru
    Almohsen, Bandar
    Oke, Abayomi S.
    Javed, Shumaila
    RESULTS IN PHYSICS, 2022, 34
  • [10] Stability analysis of a fractional-order cancer model with chaotic dynamics
    Naik, Parvaiz Ahmad
    Zu, Jian
    Naik, Mehraj-ud-din
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2021, 14 (06)