Improving earthquake prediction accuracy in Los Angeles with machine learning

被引:7
作者
Yavas, Cemil Emre [1 ]
Chen, Lei [1 ]
Kadlec, Christopher [1 ]
Ji, Yiming [1 ]
机构
[1] Georgia Southern Univ, Dept Informat Technol, Statesboro, GA 30458 USA
基金
美国国家科学基金会;
关键词
SAN-ANDREAS FAULT; WENCHUAN EARTHQUAKE; NEURAL-NETWORK; B-VALUE; BASIN; DEFORMATION; HAZARDS; STRESS;
D O I
10.1038/s41598-024-76483-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This research breaks new ground in earthquake prediction for Los Angeles, California, by leveraging advanced machine learning and neural network models. We meticulously constructed a comprehensive feature matrix to maximize predictive accuracy. By synthesizing existing research and integrating novel predictive features, we developed a robust subset capable of estimating the maximum potential earthquake magnitude. Our standout achievement is the creation of a feature set that, when applied with the Random Forest machine learning model, achieves a high accuracy in predicting the maximum earthquake category within the next 30 days. Among sixteen evaluated machine learning algorithms, Random Forest proved to be the most effective. Our findings underscore the transformative potential of machine learning and neural networks in enhancing earthquake prediction accuracy, offering significant advancements in seismic risk management and preparedness for Los Angeles.
引用
收藏
页数:54
相关论文
共 152 条
[1]   LSTM-Based Deep Learning Methods for Prediction of Earthquakes Using Ionospheric Data [J].
Abri, Rayan ;
Artuner, Harun .
GAZI UNIVERSITY JOURNAL OF SCIENCE, 2022, 35 (04) :1417-1431
[2]  
Aderemi A.A., 2013, EARTH SCI RES, V2, DOI DOI 10.5539/ESR.V2N2P1
[3]  
Akter S., 2015, International Journal of Research in Engineering and Technology, V04, P149, DOI [10.15623/ijret.2015.0412028, DOI 10.15623/IJRET.2015.0412028]
[4]  
Al-Heety Emad A., 2024, IOP Conference Series: Earth and Environmental Science, V1300, DOI 10.1088/1755-1315/1300/1/012001
[5]  
Albaba M., 2020, International Journal of Applied Mathematics Electronics and Computers, V8, P185, DOI [DOI 10.18100/IJAMEC.803105, 10.18100/ijamec.803105]
[6]  
Asgarian B., 2017, P 6 INT C COMP METH, P1779, DOI [10.7712/120117.5528.17007, DOI 10.7712/120117.5528.17007]
[7]   Earthquake prediction model using support vector regressor and hybrid neural networks [J].
Asim, Khawaja M. ;
Idris, Adnan ;
Lqbal, Talat ;
Martinez-Alvarez, Francisco .
PLOS ONE, 2018, 13 (07)
[8]   Investigation of the characteristics of geoelectric field signals prior to earthquakes using adaptive STFT techniques [J].
Astuti, W. ;
Sediono, W. ;
Akmeliawati, R. ;
Aibinu, A. M. ;
Salami, M. J. E. .
NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2013, 13 (06) :1679-1686
[9]  
Azadkia M., 2020, arXiv, DOI DOI 10.48550/ARXIV.1909.05495
[10]   Water Use Inequality and Efficiency Assessments in the Yangtze River Economic Delta of China [J].
Babuna, Pius ;
Yang, Xiaohua ;
Bian, Dehui .
WATER, 2020, 12 (06)