Positron annihilation study of defect formation and evolution in matrix graphite under He ion irradiation

被引:0
作者
Xu, Hong-Xia [1 ]
Liu, Jian-Dang [2 ]
Ye, Bang-Jiao [2 ]
Pan, Zi-Wen [2 ]
Lin, Jun [1 ]
Song, Jin-Liang [1 ]
Cao, Jian-Qing [1 ]
Yan, Chao [1 ]
Hao, Ying-Ping [3 ]
Cheng, Jin-Xing [4 ]
Wang, Qing-Bo [4 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China
[2] Univ Sci & Technol China, State Key Lab Particle Detect & Elect, Hefei 230026, Peoples R China
[3] Shanghai Jiao Tong Univ, Ruijin Hosp, Sch Med, Shanghai 200025, Peoples R China
[4] Beijing Inst High Technol, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphite; Positron annihilation; Irradiation; Raman spectrum; MOLTEN-SALT REACTOR; ISOTROPIC GRAPHITE; FUEL; DAMAGE;
D O I
10.1007/s41365-024-01548-5
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The stability of matrix graphite under neutron irradiation and in corrosive environments is crucial for the safe operation of molten salt reactors (MSRs). Raman spectroscopy and a slow positron beam were employed to investigate the effects of He ion irradiation fluences and subsequent annealing on the microstructure and defects of the matrix graphite. He ions with 500 keV energy and fluences ranging from 1.1x1015ions/cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1.1}\times {10}<^>{15}\,{\text{ions}}/{\text{cm}}<^>{2}$$\end{document} to 3.5x1017ions/cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${3.5}\times {10}<^>{17}\,{\text{ions}}/{\text{cm}}<^>{2}$$\end{document} were used to simulate neutron irradiation at 300 K. The samples with an irradiation fluence of 3.5x1016ions/cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${3.5}\times {10}<^>{16}\,{\text{ions}}/{\text{cm}}<^>{2}$$\end{document} were subjected to isochronal annealing at different temperatures (573 K, 873 K and 1173 K) for 3 h. The Raman results revealed that the D peak gradually increased, whereas the intrinsic G peak decreased with increasing irradiation fluence. At the same irradiation fluence, the D peak gradually decreased, whereas the intrinsic G peak increased with increasing annealing temperature. Slow positron beam analysis demonstrated that the density or size of irradiation defects (vacancy type) increased with higher irradiation fluence, but decreased rapidly with increasing annealing temperature. The Raman spectral analysis of sample cross sections subjected to high irradiation fluences revealed the emergence of amorphization precisely at the depth where ion damage was most pronounced, whereas the surface retained its crystalline structure. Raman and positron annihilation analyses indicated that the matrix graphite exhibited good irradiation resistance to He ions at 300 K. However, vacancy-type defects induced by He ion irradiation exhibit poor thermal stability and can be easily removed during annealing.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Positron annihilation spectroscopy study of vacancy-type defects in He implanted polycrystalline α-SiC
    Li, Bingsheng
    Krsjak, Vladimir
    Degmova, Jarmila
    Wang, Zhiguang
    Shen, Tielong
    Li, Hui
    Sojak, Stanislav
    Slugen, Vladimir
    Kawasuso, Atsuo
    JOURNAL OF NUCLEAR MATERIALS, 2020, 535
  • [22] Positron annihilation lifetime studies of stainless steel under proton and Xe irradiation
    Xu, Chaoliang
    Zhang, Guodong
    Qian, Wangjie
    Mei, Jinna
    Liu, Xiangbing
    Li, Chengtao
    Xue, Fei
    Li, Jinyu
    Liu, Huiping
    FUSION ENGINEERING AND DESIGN, 2017, 120 : 34 - 38
  • [23] Ion irradiation and defect formation in single layer graphene
    Compagnini, Giuseppe
    Giannazzo, Filippo
    Sonde, Sushant
    Raineri, Vito
    Rimini, Emanuele
    CARBON, 2009, 47 (14) : 3201 - 3207
  • [24] Defect formation in AlN after irradiation with He2+ ions
    Zdorovets, M.
    Dukenbayev, K.
    Kozlovskiy, A.
    Kenzhina, I.
    CERAMICS INTERNATIONAL, 2019, 45 (07) : 8130 - 8137
  • [25] Effect of He+ fluence on surface morphology and ion-irradiation induced defect evolution in 7075 aluminum alloys
    Ni, Kai
    Ma, Qian
    Wan, Hao
    Yang, Bin
    Ge, Junjie
    Zhang, Lingyu
    Si, Naichao
    MATERIALS RESEARCH EXPRESS, 2018, 5 (02)
  • [26] Self-organized nanostructure formation on the graphite surface induced by helium ion irradiation
    Dutta, N. J.
    Mohanty, S. R.
    Buzarbaruah, N.
    Ranjan, M.
    Rawat, R. S.
    PHYSICS LETTERS A, 2018, 382 (24) : 1601 - 1608
  • [27] Kinetics of radiation defect formation in iron under high displacement rate irradiation
    L'vov, Pavel
    Tikhonchev, Mikhail
    RESULTS IN PHYSICS, 2020, 16
  • [28] Effect of Proton and Silicon Ion Irradiation on Defect Formation in GaAs
    Warner, Jeffrey H.
    Inguimbert, Christophe
    Twigg, Mark E.
    Messenger, Scott R.
    Walters, Robert J.
    Romero, Manuel J.
    Summers, Geoffrey R.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2008, 55 (06) : 3016 - 3024
  • [29] Vacancy-type defect production in CLAM steel after the co-implantation of He and H ion beams studied by positron-annihilation spectroscopy
    Xin, Yong
    Ju, Xin
    Qiu, Jie
    Guo, Liping
    Li, Tiecheng
    Luo, Fengfeng
    Zhang, Peng
    Cao, Xingzhong
    Wang, Baoyi
    JOURNAL OF NUCLEAR MATERIALS, 2013, 432 (1-3) : 120 - 126
  • [30] A Molecular Dynamics Study on the Defect Formation and Mechanical Behavior of Molybdenum Disulfide under Irradiation
    Shi, Yeran
    Wang, Wan
    Zhou, Qing
    Xia, Qiaosheng
    Hua, Dongpeng
    Huang, Zhiyuan
    Chai, Liqiang
    Wang, Haifeng
    Wang, Peng
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (22) : 29453 - 29465