Experimental investigation of a standing-wave thermoacoustic electricity generator with different working gases

被引:1
作者
Setiawan, Ikhsan [1 ]
Farikhah, Irna [2 ]
Murti, Prastowo [3 ]
Setio-Utomo, Agung Bambang [1 ]
机构
[1] Univ Gadjah Mada, Fac Math & Nat Sci, Dept Phys, Yogyakarta 55281, Indonesia
[2] Univ PGRI Semarang, Fac Engn & Informat, Dept Mech Engn, Semarang 50232, Indonesia
[3] Univ Gadjah Mada, Fac Engn, Dept Mech & Ind Engn, Yogyakarta 55281, Indonesia
来源
SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES | 2025年 / 50卷 / 02期
关键词
Thermoacoustic; electricity generator; standing wave; working gas; PERFORMANCE ANALYSIS; HEAT ENGINE; WASTE HEAT; DRIVEN; DESIGN; CONVERSION; FLUID; POWER;
D O I
10.1007/s12046-025-02707-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermoacoustic electricity generation is an environmentally friendly alternative technology to generate electrical energy from waste heat or other low-grade heat sources. The standing-wave type offers a simple and compact configuration. We experimentally studied a standing-wave thermoacoustic electricity generator with three working gases: air, nitrogen, and argon. This study evaluates the onset temperature difference, generated sound frequency, pressure amplitude, output electrical power, and optimal load resistance when the mean pressure of the working gases increased from 100 kPa to 500 kPa. A mean pressure of 200 kPa was found to be optimal for all tested working gases, resulting in the smallest onset temperature difference and the highest electrical power output. In general, the smallest onset temperature difference was 233 degrees C, while the largest root mean square electrical power was 1.54 W, both obtained with air as the working gas, with a heating power of 378 W. In addition, sound frequencies generated by all test gases increased by less than 2%, while pressure amplitudes increased nearly threefold. Furthermore, load resistances in the range of 10 Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} to 50 Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} were found to be the optimal load to extract the maximum electrical power.
引用
收藏
页数:15
相关论文
共 35 条
[11]   The effect of working fluid on the performance of a large-scale thermoacoustic Stirling engine [J].
Dong, Shichong ;
Shen, Guoqing ;
Xu, Mobei ;
Zhang, Shiping ;
An, Liansuo .
ENERGY, 2019, 181 :378-386
[12]   Resource letter: TA-1: Thermoacoustic engines and refrigerators [J].
Garrett, SL .
AMERICAN JOURNAL OF PHYSICS, 2004, 72 (01) :11-17
[13]   Influence of working fluid on the performance of a standing-wave thermoacoustic prime mover [J].
Hao, X. H. ;
Ju, Y. L. ;
Behera, Upendra ;
Kasthurirengan, S. .
CRYOGENICS, 2011, 51 (09) :559-561
[14]   Thermoacoustic prime movers and refrigerators: Thermally powered engines without moving components [J].
Jin, Tao ;
Huang, Jiale ;
Feng, Ye ;
Yang, Rui ;
Tang, Ke ;
Radebaugh, Ray .
ENERGY, 2015, 93 :828-853
[15]   A two-stage traveling-wave thermoacoustic electric generator with loudspeakers as alternators [J].
Kang, Huifang ;
Cheng, Peng ;
Yu, Zhibin ;
Zheng, Hongfei .
APPLIED ENERGY, 2015, 137 :9-17
[16]  
Lemmon E. W., 2023, NIST Chemistry WebBook, NIST Standard Reference Database Number 69
[17]   Study of a liquid-piston traveling-wave thermoacoustic heat engine with different working gases [J].
Li, Dong-Hui ;
Chen, Yan-Yan ;
Luo, Er-Cang ;
Wu, Zhang-Hua .
ENERGY, 2014, 74 :158-163
[18]   Design of a thermoacoustic heat engine for low temperature waste heat recovery in food manufacturing A thermoacoustic device for heat recovery [J].
Mumith, J. -A. ;
Makatsoris, C. ;
Karayiannis, T. G. .
APPLIED THERMAL ENGINEERING, 2014, 65 (1-2) :588-596
[19]   Transient characteristics and stability analysis of standing wave thermoacoustic-piezoelectric harvesters [J].
Nouh, Mostafa ;
Aldraihem, Osama ;
Baz, Amr .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2014, 135 (02) :669-678