Experimental investigation of a standing-wave thermoacoustic electricity generator with different working gases

被引:1
作者
Setiawan, Ikhsan [1 ]
Farikhah, Irna [2 ]
Murti, Prastowo [3 ]
Setio-Utomo, Agung Bambang [1 ]
机构
[1] Univ Gadjah Mada, Fac Math & Nat Sci, Dept Phys, Yogyakarta 55281, Indonesia
[2] Univ PGRI Semarang, Fac Engn & Informat, Dept Mech Engn, Semarang 50232, Indonesia
[3] Univ Gadjah Mada, Fac Engn, Dept Mech & Ind Engn, Yogyakarta 55281, Indonesia
来源
SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES | 2025年 / 50卷 / 02期
关键词
Thermoacoustic; electricity generator; standing wave; working gas; PERFORMANCE ANALYSIS; HEAT ENGINE; WASTE HEAT; DRIVEN; DESIGN; CONVERSION; FLUID; POWER;
D O I
10.1007/s12046-025-02707-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermoacoustic electricity generation is an environmentally friendly alternative technology to generate electrical energy from waste heat or other low-grade heat sources. The standing-wave type offers a simple and compact configuration. We experimentally studied a standing-wave thermoacoustic electricity generator with three working gases: air, nitrogen, and argon. This study evaluates the onset temperature difference, generated sound frequency, pressure amplitude, output electrical power, and optimal load resistance when the mean pressure of the working gases increased from 100 kPa to 500 kPa. A mean pressure of 200 kPa was found to be optimal for all tested working gases, resulting in the smallest onset temperature difference and the highest electrical power output. In general, the smallest onset temperature difference was 233 degrees C, while the largest root mean square electrical power was 1.54 W, both obtained with air as the working gas, with a heating power of 378 W. In addition, sound frequencies generated by all test gases increased by less than 2%, while pressure amplitudes increased nearly threefold. Furthermore, load resistances in the range of 10 Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} to 50 Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} were found to be the optimal load to extract the maximum electrical power.
引用
收藏
页数:15
相关论文
共 35 条
[1]   Two-stage travelling-wave thermoacoustic electricity generator for rural areas of developing countries [J].
Abdoulla-Latiwish, Kalid O. A. ;
Jaworski, Artur J. .
APPLIED ACOUSTICS, 2019, 151 :87-98
[2]   Thermoacoustic micro-electricity generator for rural dwellings in developing countries driven by waste heat from cooking activities [J].
Abdoulla-Latiwish, Kalid O. A. ;
Mao, Xiaoan ;
Jaworski, Artur J. .
ENERGY, 2017, 134 :1107-1120
[3]   Design and construction of a solar-powered, thermoacoustically driven, thermoacoustic refrigerator [J].
Adeff, JA ;
Hofler, TJ .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2000, 107 (06) :L37-L42
[4]   Compact standing wave thermoacoustic generator for power conversion applications [J].
Agarwal, Harshal ;
Unni, Vishnu R. ;
Akhil, K. T. ;
Ravi, N. T. ;
Iqbal, S. Md. ;
Sujith, R. I. ;
Pesala, Bala .
APPLIED ACOUSTICS, 2016, 110 :110-118
[5]   Experimental investigation of an adjustable thermoacoustically-driven thermoacoustic refrigerator [J].
Alcock, A. C. ;
Tartibu, L. K. ;
Jen, T. C. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2018, 94 :71-86
[6]   Numerical modeling of standing wave thermoacoustic devices-A review Modelisation numerique des dispositifs thermoacoustiques a ondes stationnaires-Une revue [J].
Bhatti, Umar Nawaz ;
Bashmal, Salem ;
Khan, Sikandar ;
Ben-Mansour, Rached .
INTERNATIONAL JOURNAL OF REFRIGERATION, 2023, 146 :47-62
[7]   Estimation of the minimum Prandtl number for binary gas mixtures formed with light helium and certain heavier gases: Application to thermoacoustic refrigerators [J].
Campo, Antonio ;
Papari, Mohammad M. ;
Abu-Nada, Eiyad .
APPLIED THERMAL ENGINEERING, 2011, 31 (16) :3142-3146
[8]   Modelling and analysis of a thermoacoustic-piezoelectric energy harvester [J].
Chen, Geng ;
Tang, Lihua ;
Mace, Brian R. .
APPLIED THERMAL ENGINEERING, 2019, 150 :532-544
[9]   Effect of different working gases on the performance of a small thermoacoustic Stirling engine [J].
Chen, M. ;
Ju, Y. L. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2015, 51 :41-51
[10]   Experimental study and analysis of a thermoacoustically driven thermoacoustic refrigerator [J].
Desai, A. B. ;
Desai, K. P. ;
Naik, H. B. ;
Atrey, M. D. .
SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2020, 45 (01)