Application of Bayesian Optimization in Gripper Design for Effective Grasping

被引:1
作者
Todescato, Marco [1 ]
Matt, Dominik T. [1 ,2 ]
Giusti, Andrea [1 ]
机构
[1] Fraunhofer Italia Res Scarl, I-39100 Bolzano, Italy
[2] Free Univ Bozen Bolzano, Fac Engn, I-39100 Bolzano, Italy
关键词
Grippers; Optimization; Grasping; Bayes methods; Robots; Object recognition; Kinematics; Shape; Measurement; Hands; Artificial intelligence; automation; robotics; manufacturing; optimization; FINGERTIP; MODEL;
D O I
10.1109/ACCESS.2025.3528643
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Despite many recent technological advancements, grasping remains a challenging open problem in robotic manipulation. In contrast with most research which focuses equipping grippers with varying degree of intelligence, we approach grasping from a gripper design perspective, aiming to find the best tool for grasping a specific set of objects. Building on our previous work, this paper reviews a suitable parametrization for the geometry of two common families of industrial grippers and presents a grasp score beneficial for gripper design. We then formally cast the problem of finding the best gripper parametrization within a probabilistic framework, addressing it using Bayesian Optimization tools. Numerical results on a set of industrial objects demonstrate the effectiveness of the approach showing up to approximate to 300% improvement compared to the performance obtained using a fixed set of grippers.
引用
收藏
页码:10215 / 10226
页数:12
相关论文
共 47 条
[11]   Robotic grasp analysis using deformable solid mechanics [J].
Dharbaneshwer, S. J. ;
Subramanian, Sankara J. ;
Kohlhoff, Kai .
MECCANICA, 2019, 54 (11-12) :1767-1784
[12]   Grasping devices and methods in automated production processes [J].
Fantoni, Gualtiero ;
Santochi, Marco ;
Dini, Gino ;
Tracht, Kirsten ;
Scholz-Reiter, Bernd ;
Fleischer, Juergen ;
Lien, Terje Kristoffer ;
Seliger, Guenther ;
Reinhart, Gunther ;
Franke, Joerg ;
Hansen, Hans Norgaard ;
Verl, Alexander .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2014, 63 (02) :679-701
[13]   Physics-Based Dexterous Manipulations with Estimated Hand Poses and Residual Reinforcement Learning [J].
Garcia-Hernando, Guillermo ;
Johns, Edward ;
Kim, Tae-Kyun .
2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, :9561-9568
[14]  
Gioioso G., 2013, 2012 Robotics: Science and Systems, P97
[15]   RGB Matters: Learning 7-DoF Grasp Poses on Monocular RGBD Images [J].
Gou, Minghao ;
Fang, Hao-Shu ;
Zhu, Zhanda ;
Xu, Sheng ;
Wang, Chenxi ;
Lu, Cewu .
2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, :13459-13466
[16]  
Ha H, 2020, PR MACH LEARN RES, V155, P176
[17]  
Hawkes EW, 2015, IEEE INT CONF ROBOT, P2305, DOI 10.1109/ICRA.2015.7139505
[18]   Physically Based Grasp Quality Evaluation Under Pose Uncertainty [J].
Kim, Junggon ;
Iwamoto, Kunihiro ;
Kuffner, James J. ;
Ota, Yasuhiro ;
Pollard, Nancy S. .
IEEE TRANSACTIONS ON ROBOTICS, 2013, 29 (06) :1424-1439
[19]   Transferring Experience from Simulation to the Real World for Precise Pick-And-Place Tasks in Highly Cluttered Scenes [J].
Kleebergcr, Kilian ;
Voelk, Markus ;
Moosmann, Marius ;
Thiessenhusen, Erik ;
Roth, Florian ;
Bormann, Richard ;
Huber, Marco F. .
2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, :9681-9688
[20]  
Kleeberger K, 2020, IEEE INT CONF ROBOT, P6239, DOI [10.1109/ICRA40945.2020.9197207, 10.1109/icra40945.2020.9197207]