Application of Bayesian Optimization in Gripper Design for Effective Grasping

被引:1
作者
Todescato, Marco [1 ]
Matt, Dominik T. [1 ,2 ]
Giusti, Andrea [1 ]
机构
[1] Fraunhofer Italia Res Scarl, I-39100 Bolzano, Italy
[2] Free Univ Bozen Bolzano, Fac Engn, I-39100 Bolzano, Italy
关键词
Grippers; Optimization; Grasping; Bayes methods; Robots; Object recognition; Kinematics; Shape; Measurement; Hands; Artificial intelligence; automation; robotics; manufacturing; optimization; FINGERTIP; MODEL;
D O I
10.1109/ACCESS.2025.3528643
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Despite many recent technological advancements, grasping remains a challenging open problem in robotic manipulation. In contrast with most research which focuses equipping grippers with varying degree of intelligence, we approach grasping from a gripper design perspective, aiming to find the best tool for grasping a specific set of objects. Building on our previous work, this paper reviews a suitable parametrization for the geometry of two common families of industrial grippers and presents a grasp score beneficial for gripper design. We then formally cast the problem of finding the best gripper parametrization within a probabilistic framework, addressing it using Bayesian Optimization tools. Numerical results on a set of industrial objects demonstrate the effectiveness of the approach showing up to approximate to 300% improvement compared to the performance obtained using a fixed set of grippers.
引用
收藏
页码:10215 / 10226
页数:12
相关论文
共 47 条
[1]   Optuna: A Next-generation Hyperparameter Optimization Framework [J].
Akiba, Takuya ;
Sano, Shotaro ;
Yanase, Toshihiko ;
Ohta, Takeru ;
Koyama, Masanori .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :2623-2631
[2]   Effortless creation of safe robots from modules through self-programming and self-verification [J].
Althoff, M. ;
Giusti, A. ;
Liu, S. B. ;
Pereira, A. .
SCIENCE ROBOTICS, 2019, 4 (31)
[3]   Automated gripper jaw design and grasp planning for sets of 3D objects [J].
Balan, L ;
Bone, GM .
JOURNAL OF ROBOTIC SYSTEMS, 2003, 20 (03) :147-162
[4]  
Balandat M, 2020, Arxiv, DOI [arXiv:1910.06403, DOI 10.48550/ARXIV.1910.06403]
[5]  
Berselli G, 2009, IEEE INT CONF ROBOT, P1247
[6]  
Bicchi A., 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), P348, DOI 10.1109/ROBOT.2000.844081
[7]   A 3-D modular gripper design tool [J].
Brown, RG ;
Brost, RC .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1999, 15 (01) :174-186
[8]  
Buchholz D., 2016, Studies in Systems, Decision and Control), V44
[9]   The Velo gripper: A versatile single-actuator design for enveloping, parallel and fingertip grasps [J].
Ciocarlie, Matei ;
Hicks, Fernando Mier ;
Holmberg, Robert ;
Hawke, Jeffrey ;
Schlicht, Michael ;
Gee, Jeff ;
Stanford, Scott ;
Bahadur, Ryan .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2014, 33 (05) :753-767
[10]  
Controzzi M, 2014, APPL BIONICS BIOMECH, V11, P25, DOI [10.1155/2014/864573, 10.3233/ABB-140092]