共 159 条
- [91] Grimm N., Yoo J., General relativistic effects in weak lensing angular power spectra, Phys Rev D, 104, 8, (2021)
- [92] Abir W.H., Uddin M.F., Khanam F.R., Tazin T., Khan M.M., Masud M., Aljahdali S., Explainable AI in diagnosing and anticipating leukemia using transfer learning method, Computat Intell Neurosci, (2022)
- [93] Porto R., Molina J.M., Berlanga A., Patricio M.A., Minimum relevant features to obtain explainable systems for predicting cardiovascular disease using the statlog data set, Appl Sci, 11, 3, (2021)
- [94] Aghamohammadi M., Madan M., Hong J.K., Watson I., Predicting heart attack through explainable artificial intelligence, . Computational science–ICCS 2019: 19Th International Conference, Faro, Portugal, 12–14, 2019, Proceedings, Part II 19, (2019)
- [95] Zhang Z., Citardi D., Wang D., Genc Y., Shan J., Fan X., Patients’ perceptions of using artificial intelligence (AI)-based technology to comprehend radiology imaging data, Health Informatics J, 27, 2, (2021)
- [96] Katuwal G.J., Chen R., Machine Learning Model Interpretability for Precision Medicine, (2016)
- [97] Holzinger A., Langs G., Denk H., Zatloukal K., Muller H., Causability and explainability of artificial intelligence in medicine, Wiley Interd Rev Data Min Knowl Disc, 9, 4, (2019)
- [98] Lauterbach A., Artificial intelligence and policy: quo vadis?, Dig Policy Regul Govern, 21, 3, pp. 238-263, (2019)
- [99] Nieto Juscafresa A., An Introduction to Explainable Artificial Intelligence with LIME and SHAP, (2022)
- [100] Pezoulas V.C., Liontos A., Mylona E., Papaloukas C., Milionis O., Biros D., Kyriakopoulos C., Kostikas K., Milionis H., Fotiadis D.I., Predicting the need for mechanical ventilation and mortality in hospitalized COVID-19 patients who received heparin, 2022 44Th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), (2022)