Thermoelectric Properties of Double Half-Heusler Ti2MnNiSi2 Alloy

被引:0
作者
M. V. Matyunina [1 ]
D. R. Baigutlin [1 ]
M. A. Zagrebin [1 ]
V. V. Sokolovskiy [1 ]
V. D. Buchelnikov [1 ]
机构
[1] Chelyabinsk State University, Chelyabinsk
基金
俄罗斯科学基金会;
关键词
double half-Heusler alloys; half-metallic ferromagnets; thermal conductivity; thermoelectric properties;
D O I
10.1134/S0031918X24602622
中图分类号
学科分类号
摘要
Abstract: This paper presents a study of the effect of structural disorder on the thermoelectric properties of the double half-Heusler Ti2MnNiSi2 alloy. The study shows that the ordered structure of the material is almost a half-metallic ferromagnet, and the thermoelectric figure of merit, when doped with n-type carriers, reaches 0.38 at a temperature of 700 K and an electron concentration of 3 × 1022 cm–3. The high value of this thermoelectric effect can be attributed to the low thermal conductivity kL. At room temperature, the minimum value of kL is 2.27 W m–1 K–1 in a disordered system and 3.62 W m–1 K–1 in an ordered one. © Pleiades Publishing, Ltd. 2024.
引用
收藏
页码:1885 / 1893
页数:8
相关论文
共 28 条
  • [1] Liu J., Gottschall T., Skokov K.P., Moore J.D., Gutfleisch O., Giant magnetocaloric effect driven by structural transitions, Nat. Mater, 11, pp. 620-626, (2012)
  • [2] Khovaylo V.V., Rodionova V.V., Shevyrtalov S.N., Novosad V., Magnetocaloric effect in “reduced” dimensions: Thin films, ribbons, and microwires of Heusler alloys and related compounds, Phys. Status Solidi B, 251, pp. 2104-2113, (2014)
  • [3] Sokolovskiy V.V., Miroshkina O.N., Buchelnikov V.D., Review of modern theoretical approaches for study of magnetocaloric materials, Phys. Met. Metallogr, 123, pp. 319-374, (2022)
  • [4] Felser C., Fecher G.H., Balke B., Spintronics: A challenge for materials science and solid-state chemistry, Angew. Chem., Int. Ed, 46, pp. 668-699, (2007)
  • [5] Marchenkov V.V., Irkhin V.Y., Half-metallic ferromagnets, spin gapless semiconductors, and topological semimetals based on heusler alloys: Theory and experiment, Phys. Met. Metallogr, 122, pp. 1133-1157, (2021)
  • [6] Fetisov Y.V., Sigov A.S., Spintronics: Physical foundations and devices, Radioelectronics. Nanosystems. Information Technologies, 10, pp. 343-356, (2018)
  • [7] Elphick K., Frost W., Samiepour M., Kubota T., Takanashi K., Sukegawa H., Mitani S., Hirohata A., Heusler alloys for spintronic devices: Review on recent development and future perspectives, Sci. Technol. Adv. Mater, 22, pp. 235-271, (2021)
  • [8] Fu C., Bai S., Liu Y., Tang Y., Chen L., Zhao X., Zhu T., Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials, Nat. Commun, 6, (2015)
  • [9] Zhu H., Mao J., Li Y., Sun J., Wang Y., Zhu Q., Li G., Song Q., Zhou J., Fu Y., He R., Tong T., Liu Z., Ren W., You L., Wang Z., Luo J., Sotnikov A., Bao J., Nielsch K., Chen G., Singh D.J., Ren Z., Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance, Nat. Commun, 10, (2019)
  • [10] Zhu H., He R., Mao J., Zhu Q., Li C., Sun J., Ren W., Wang Y., Liu Z., Tang Z., Sotnikov A., Wang Z., Broido D., Singh D.J., Chen G., Nielsch K., Ren Z., Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency, Nat. Commun, 9, (2018)