Discrete Symmetries;
Global Symmetries;
Field Theories in Lower Dimensions;
Conformal and W Symmetry;
D O I:
10.1007/JHEP02(2025)070
中图分类号:
学科分类号:
摘要:
We investigate two-dimensional conformal field theories (CFTs) with affine sû2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \hat{su}(2) $$\end{document} and sû3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \hat{su}(3) $$\end{document} algebra symmetry. Their bosonic modular-invariant partition functions have been fully classified based on the ADE classification. In this work, we extend the classification to include fermionic and parafermionic CFTs with the same affine symmetries, utilizing techniques of fermionization and parafermionization. We find that the fermionic and parafermionic sû2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \hat{su}(2) $$\end{document} models are related to non-simply laced Dynkin diagrams.