Upper bounds on the highest phonon frequency and superconducting temperature from fundamental physical constants

被引:2
作者
Trachenko, K. [1 ]
Monserrat, B. [2 ,3 ]
Hutcheon, M. [4 ]
Pickard, Chris J. [2 ,5 ]
机构
[1] Queen Mary Univ London, Sch Phys & Chem Sci, 327 Mile End Rd, London E1 4NS, England
[2] Univ Cambridge, Dept Mat Sci & Met, 27 Charles Babbage Rd, Cambridge CB3 0FS, England
[3] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[4] Intellectual Ventures, Bellevue, WA USA
[5] Tohoku Univ, Adv Inst Mat Res, Sendai, Japan
基金
英国工程与自然科学研究理事会;
关键词
phonons; superconductivity; superconducting temperature; TRANSITION; PHASE; PRINCIPLE; HYDROGEN; VALUES;
D O I
10.1088/1361-648X/adbc39
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Fundamental physical constants govern key effects in high-energy particle physics and astrophysics, including the stability of particles, nuclear reactions, formation and evolution of stars, synthesis of heavy nuclei and emergence of stable molecular structures. Here, we show that fundamental constants also set an upper bound for the frequency of phonons in condensed matter phases, or how rapidly an atom can vibrate in these phases. This bound is in agreement with ab initio simulations of atomic hydrogen and high-temperature hydride superconductors, and implies an upper limit to the superconducting transition temperature Tc in condensed matter. Fundamental constants set this limit to the order of 102-103 K. This range is consistent with our calculations of Tc from optimal Eliashberg functions. As a corollary, we observe that the very existence of the current research of finding Tc at and above 300 K is due to the observed values of fundamental constants. We finally discuss how fundamental constants affect the observability and operation of other effects and phenomena including phase transitions.
引用
收藏
页数:8
相关论文
共 82 条
[1]   The degree of fine-tuning in our universe - and others [J].
Adams, Fred C. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2019, 807 :1-111
[2]  
[Anonymous], 2007, Universe or multiverse?
[3]  
Ashcroft N. W., 1976, Solid State Physics
[4]   Dissociation of High-Pressure Solid Molecular Hydrogen: A Quantum Monte Carlo and Anharmonic Vibrational Study [J].
Azadi, Sam ;
Monserrat, Bartomeu ;
Foulkes, W. M. C. ;
Needs, R. J. .
PHYSICAL REVIEW LETTERS, 2014, 112 (16)
[5]   Transverse Demagnetization Dynamics of a Unitary Fermi Gas [J].
Bardon, A. B. ;
Beattie, S. ;
Luciuk, C. ;
Cairncross, W. ;
Fine, D. ;
Cheng, N. S. ;
Edge, G. J. A. ;
Taylor, E. ;
Zhang, S. ;
Trotzky, S. ;
Thywissen, J. H. .
SCIENCE, 2014, 344 (6185) :722-724
[6]  
Barrow JD., 2006, Sci. Am, V16, P64, DOI [10.1038/scientificamerican0206-64sp, DOI 10.1038/SCIENTIFICAMERICAN0206-64SP]
[7]  
Barrow JD., 2009, The Anthropic Cosmological Principle
[8]  
Barrow JD., 2003, The Constants of Nature
[9]   A lower bound to the thermal diffusivity of insulators [J].
Behnia, Kamran ;
Kapitulnik, Aharon .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (40)
[10]   The 2021 room-temperature superconductivity roadmap [J].
Boeri, Lilia ;
Hennig, Richard ;
Hirschfeld, Peter ;
Profeta, Gianni ;
Sanna, Antonio ;
Zurek, Eva ;
Pickett, Warren E. ;
Amsler, Maximilian ;
Dias, Ranga ;
Eremets, Mikhail, I ;
Heil, Christoph ;
Hemley, Russell J. ;
Liu, Hanyu ;
Ma, Yanming ;
Pierleoni, Carlo ;
Kolmogorov, Aleksey N. ;
Rybin, Nikita ;
Novoselov, Dmitry ;
Anisimov, Vladimir ;
Oganov, Artem R. ;
Pickard, Chris J. ;
Bi, Tiange ;
Arita, Ryotaro ;
Errea, Ion ;
Pellegrini, Camilla ;
Requist, Ryan ;
Gross, E. K. U. ;
Margine, Elena Roxana ;
Xie, Stephen R. ;
Quan, Yundi ;
Hire, Ajinkya ;
Fanfarillo, Laura ;
Stewart, G. R. ;
Hamlin, J. J. ;
Stanev, Valentin ;
Gonnelli, Renato S. ;
Piatti, Erik ;
Romanin, Davide ;
Daghero, Dario ;
Valenti, Roser .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (18)