Solving Hammerstein-Type Integral Equations with Polynomial Nemystkii Operator

被引:0
|
作者
Hernandez-Veron, M. A. [1 ]
Yadav, Sonia [2 ]
Martinez, Eulalia [3 ]
Singh, Sukhjit [2 ]
机构
[1] Univ La Rioja, Dept Math & Computat, Logrono, Spain
[2] Dr BR Ambedkar Natl Inst Technol, Jalandhar, India
[3] Univ Politecn Valencia, Inst Univ Matemat Multidisciplinar, Valencia, Spain
关键词
Hammerstein-type non-linear integral equations; family of third-order iterative methods; convergence; recurrence relations; FREDHOLM;
D O I
10.1007/s00009-025-02830-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we use a family of third-order iterative methods to locate, separate, and approximate a solution of non-linear integral equations of Hammerstein type. We will consider two situations, when the kernel of the integral equation is separable and when it is not separable. When the kernel is non-separable, we will approximate the given integral equation by means of a new one with a separable kernel, and this transformation allows us to locate and approximate a solution of the first integral equation. To apply our theoretical findings, various examples have been tested.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] The application of an inverse-free Jarratt-type approximation to nonlinear integral equations of Hammerstein-type
    Ezquerro, JA
    Gutierrez, JM
    Hernandez, MA
    Salanova, MA
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 36 (04) : 9 - 20
  • [2] On the solvability of a system of nonlinear integral equations with a monotone Hammerstein type operator
    Khachatryan, Kh. A.
    Petrosyan, H. S.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2022, 28 (02): : 201 - 214
  • [3] Secant-like methods for solving nonlinear integral equations of the Hammerstein type
    Hernández, MA
    Rubio, MJ
    Ezquerro, JA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 115 (1-2) : 245 - 254
  • [4] Fourth-order iterations for solving Hammerstein integral equations
    Ezquerro, J. A.
    Hernandez, M. A.
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (06) : 1149 - 1158
  • [5] An ensemble Kalman filter approach based on operator splitting for solving nonlinear Hammerstein type ill-posed operator equations
    Yang, Xiao-Mei
    Deng, Zhi-Liang
    MODERN PHYSICS LETTERS B, 2018, 32 (28):
  • [6] On a Class of Nonlinear Integral Equations of the Hammerstein–Volterra Type on a Semiaxis
    Kh. A. Khachatryan
    H. S. Petrosyan
    Russian Mathematics, 2023, 67 : 64 - 73
  • [7] On a Class of Nonlinear Integral Equations of the Hammerstein-Volterra Type on a Semiaxis
    Khachatryan, Kh. A.
    Petrosyan, H. S.
    RUSSIAN MATHEMATICS, 2023, 67 (01) : 64 - 73
  • [8] Domain of Existence and Uniqueness for Nonlinear Hammerstein Integral Equations
    Singh, Sukhjit
    Martinez, Eulalia
    Kumar, Abhimanyu
    Gupta, D. K.
    MATHEMATICS, 2020, 8 (03)
  • [9] Polynomial Spline Collocation Method for Solving Weakly Regular Volterra Integral Equations of the First Kind
    Tynda, Aleksandr N.
    Noeiaghdam, Samad
    Sidorov, Denis N.
    BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2022, 39 : 62 - 79
  • [10] Convergence of an Approach for Solving Fredholm Functional Integral Equations
    Aghazadeh, Nasser
    Fathi, Somayeh
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2016, 11 (01): : 35 - 46