Generalized products and Lorentzian length spaces

被引:0
作者
Soultanis, Elefterios [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, Finland
关键词
Lorentzian length spaces; Global hyperbolicity; Orthogonal splitting; Non-smooth Lorentzian geometry; Synthetic curvature bounds; Optimal transport; METRIC-MEASURE-SPACES; SPLITTING THEOREM; CURVATURE; ENTROPY;
D O I
10.1007/s11005-025-01910-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a Lorentzian length space with an orthogonal splitting on a product IxX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I\times X$$\end{document} of an interval and a metric space and use this framework to consider the relationship between metric and causal geometry, as well as synthetic time-like Ricci curvature bounds. The generalized Lorentzian product carries a natural Lorentzian length structure but can fail the push-up condition in general. We recover the push-up property under a log-Lipschitz condition on the time variable and establish sufficient conditions for global hyperbolicity. Moreover, we formulate time-like Ricci curvature bounds without push-up and regularity assumptions and obtain a partial rigidity of the splitting under a strong energy condition.
引用
收藏
页数:38
相关论文
共 41 条
  • [1] Alexander SB, 2023, COMMUN ANAL GEOM, V31, P1469
  • [2] Properties of the Null Distance and Spacetime Convergence
    Allen, Brian
    Burtscher, Annegret
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (10) : 7729 - 7808
  • [3] Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below
    Ambrosio, Luigi
    Gigli, Nicola
    Savare, Giuseppe
    [J]. INVENTIONES MATHEMATICAE, 2014, 195 (02) : 289 - 391
  • [4] [Anonymous], 2003, Contemp. Math., V338, P173, DOI [10.1090/conm/338/06074, DOI 10.1090/CONM/338/06074]
  • [5] Beran T, 2024, Arxiv, DOI arXiv:2408.15968
  • [6] The splitting theorem for globally hyperbolic Lorentzian length spaces with non-negative timelike curvature
    Beran, Tobias
    Ohanyan, Argam
    Rott, Felix
    Solis, Didier A.
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2023, 113 (02)
  • [7] Gluing constructions for Lorentzian length spaces
    Beran, Tobias
    Rott, Felix
    [J]. MANUSCRIPTA MATHEMATICA, 2024, 173 (1-2) : 667 - 710
  • [8] Hyperbolic angles in Lorentzian length spaces and timelike curvature bounds
    Beran, Tobias
    Saemann, Clemens
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, 107 (05): : 1823 - 1880
  • [9] Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes
    Bernal, AN
    Sánchez, M
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 257 (01) : 43 - 50
  • [10] Rényi's entropy on Lorentzian spaces. Timelike curvature-dimension conditions
    Braun, Mathias
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 177 : 46 - 128