Optimizing CO2 capture property of alkali-activated ladle slag materials with sodium dodecyl sulfate

被引:1
|
作者
Huo, Binbin [1 ]
Zhang, Yamei [2 ]
Wang, Dongmin [3 ]
机构
[1] China Univ Min & Technol, Sch Mines, State Key Lab Fine Explorat & Intelligent Dev Coal, Xuzhou 221116, Peoples R China
[2] Southeast Univ, Sch Mat Sci & Engn, Jiangsu Key Lab Construct Mat, Nanjing 211189, Peoples R China
[3] China Univ Min & Technol, Sch Chem & Environm Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Ladle slag; Alkali-activated materials; Microstructure; CO2; capture; Life cycle assessment; CEMENT; PERFORMANCE; CARBONATION; COMPOSITE; HYDRATION; BEHAVIOR;
D O I
10.1016/j.powtec.2024.120388
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Ladle slag is a kind of metallurgical solid waste with great potential to be used to prepare alkali-activated ladle slag materials (ALS) and to capture CO2 due to its rich Ca and Si minerals. In this investigation, sodium dodecyl sulfate (SDS) was applied to optimize the microstructure of ALS, aiming to improve the CO2 capture property of ALS. The effect of SDS on CO2 capture property, compressive strength, pore structure and mineral evolution of ALS were comprehensively analyzed. The results show that adding SDS improves the CO2 capture property of ALS, and at 0.20 % SDS dosage, the CO2 capture capability of ALS reaches 6.17 %, a 48 % increase over the reference group. However, SDS incorporation decreases the compressive strength of ALS, but benefits for the carbon footprint owing to the improved CO2 capture amount. This study provides a novel direction for optimizing the CO2 capture properties and application of LS.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Using recycled gangue to capture CO2 and prepare alkali-activated backfill paste: Adsorption and microevolution mechanisms
    Huo, Binbin
    Zhang, Qiang
    Li, Meng
    Xing, Shihao
    FUEL, 2024, 358
  • [22] Mitigating Portland Cement CO2 Emissions Using Alkali-Activated Materials: System Dynamics Model
    Nehdi, Moncef L.
    Yassine, Abdallah
    MATERIALS, 2020, 13 (20) : 1 - 23
  • [23] Performance of CO 2-cured alkali-activated blast-furnace slag incorporating magnesium oxide
    Jun, Yubin
    Han, Seong Ho
    Kim, Jae Hong
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 429
  • [24] CO2 capture and sequestration by sodium humate and Ca(OH)2 from carbide slag
    Sun, Zhiguo
    Feng, Run
    Zhang, Li
    Xie, Hongyong
    RESEARCH ON CHEMICAL INTERMEDIATES, 2018, 44 (05) : 3613 - 3627
  • [25] Technoeconomic Study of Alkali-Activated Slag Concrete with a Focus on Strength, CO2 Emission, and Material Cost
    Gholizadeh-Vayghan, Asghar
    Nofallah, Mohammad-Hossein
    Khaloo, Alireza
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2021, 33 (07)
  • [26] Carbonation-induced properties of alkali-activated cement exposed to saturated and supercritical CO2
    Samarakoon, M. H.
    Ranjith, P. G.
    Xiao, Fei
    Isaka, B. L. Avanthi
    Gajanayake, S. M.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2021, 110
  • [27] Performance of CO2-Cured Alkali-Activated Slag Pastes During Curing and Exposure
    Jun, Yubin
    Han, Seong Ho
    Kim, Jae Hong
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2023, 17 (01)
  • [28] Heavy Metal Leaching, CO2 Uptake and Mechanical Characteristics of Carbonated Porous Concrete with Alkali-Activated Slag and Bottom Ash
    Kim, G. M.
    Jang, J. G.
    Naeem, Faizan
    Lee, H. K.
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2015, 9 (03) : 283 - 294
  • [29] CO2 capture by carbide slag from chlor-alkali plant in calcination/carbonation cycles
    Li, Yingjie
    Sun, Rongyue
    Liu, Changtian
    Liu, Hongling
    Lu, Chunmei
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2012, 9 : 117 - 123
  • [30] Durability of Alkali-Activated Slag - Bentonite Cutoff Wall Exposed to Sodium Sulfate and Pb-Zn Solution
    Wu, Haoliang
    Ni, Jing
    Zeng, Luo
    Huang, Mengyu
    Du, Yanjun
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONGRESS ON ENVIRONMENTAL GEOTECHNICS, VOL 2: TOWARDS A SUSTAINABLE GEOENVIRONMENT, 2019, : 430 - 439