Source-independent quantum random number generators with integrated silicon photonics

被引:0
作者
Du, Yongqiang [1 ]
Hua, Xin [2 ,3 ]
Zhao, Zhengeng [1 ]
Sun, Xiaoran [1 ]
Zhang, Zhenrong [4 ]
Xiao, Xi [2 ,3 ]
Wei, Kejin [1 ]
机构
[1] Guangxi Univ, Sch Phys Sci & Technol, Guangxi Key Lab Relativist Astrophys, Nanning 530004, Peoples R China
[2] Natl Informat Optoelect Innovat Ctr NOE, Wuhan 430074, Peoples R China
[3] China Informat & Commun Technol Grp Corp CICT, State Key Lab Opt Commun Technol & Networks, Wuhan 430074, Peoples R China
[4] Guangxi Univ, Sch Comp Elect & Informat, Guangxi Key Lab Multimedia Commun & Network Techno, Nanning 530004, Peoples R China
来源
COMMUNICATIONS PHYSICS | 2025年 / 8卷 / 01期
基金
中国国家自然科学基金;
关键词
KEY DISTRIBUTION; SECURITY;
D O I
10.1038/s42005-024-01917-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Random numbers play a crucial role in numerous scientific applications. Source-independent quantum random number generators (SI-QRNGs) can offer true randomness by leveraging the fundamental principles of quantum mechanics, eliminating the need for a trusted source. Silicon photonics demonstrates significant promise for QRNG due to its benefits in miniaturization, cost-effective device manufacturing, and compatibility with CMOS microelectronics. This study experimentally demonstrates a silicon-based discrete variable SI-QRNG. Our SI-QRNG system achieves a low error rate of only 0.21%, thanks to the inherent stability of the silicon-based decoder chip and its excellent polarization extinction ratio. Additionally, by using a laser with a higher repetition rate and a robust simulation model, we achieve the highest quantum random number generation rate of 9.49 Mbits per second. Our research paves the way for integrated SI-QRNGs, providing a cost-effective and robust secure QRNG module for next-generation communications.
引用
收藏
页数:8
相关论文
共 76 条
[1]   Quantum entropy source on an InP photonic integrated circuit for random number generation [J].
Abellan, Carlos ;
Amaya, Waldimar ;
Domenech, David ;
Munoz, Pascual ;
Capmany, Jose ;
Longhi, Stefano ;
Mitchell, Morgan W. ;
Pruneri, Valerio .
OPTICA, 2016, 3 (09) :989-994
[2]   Structures and Methods for Fully-Integrated Quantum Random Number Generators [J].
Acerbi, Fabio ;
Massari, Nicola ;
Gasparini, Leonardo ;
Tomasi, Alessandro ;
Zorzi, Nicola ;
Fontana, Giorgio ;
Pavesi, Lorenzo ;
Gola, Alberto .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (03)
[3]   Certified randomness in quantum physics [J].
Acin, Antonio ;
Masanes, Lluis .
NATURE, 2016, 540 (7632) :213-219
[4]   Source-device-independent heterodyne-based quantum random number generator at 17 Gbps [J].
Avesani, Marco ;
Marangon, Davide G. ;
Vallone, Giuseppe ;
Villoresi, Paolo .
NATURE COMMUNICATIONS, 2018, 9
[5]   18.8 Gbps real-time quantum random number generator with a photonic integrated chip [J].
Bai, Bing ;
Huang, Jianyao ;
Qiao, Guan-Ru ;
Nie, You-Qi ;
Tang, Weijie ;
Chu, Tao ;
Zhang, Jun ;
Pan, Jian-Wei .
APPLIED PHYSICS LETTERS, 2021, 118 (26)
[6]   Squashing models for optical measurements in quantum communication [J].
Beaudry, Normand J. ;
Moroder, Tobias ;
Lutkenhaus, Norbert .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[7]  
Bennett C. H., 1984, Reviews of Modern Physics, P175, DOI [DOI 10.1103/REVMODPHYS.74.145, 10.1016/j.tcs.2014.05.025]
[8]  
Bertapelle T, 2024, Arxiv, DOI arXiv:2305.12472
[9]   Experimentally generated randomness certified by the impossibility of superluminal signals [J].
Bierhorst, Peter ;
Knill, Emanuel ;
Glancy, Scott ;
Zhang, Yanbao ;
Mink, Alan ;
Jordan, Stephen ;
Rommal, Andrea ;
Liu, Yi-Kai ;
Christensen, Bradley ;
Nam, Sae Woo ;
Stevens, Martin J. ;
Shalm, Lynden K. .
NATURE, 2018, 556 (7700) :223-+
[10]   100-Gbit/s Integrated Quantum Random Number Generator Based on Vacuum Fluctuations [J].
Bruynsteen, Cedric ;
Gehring, Tobias ;
Lupo, Cosmo ;
Bauwelinck, Johan ;
Yin, Xin .
PRX QUANTUM, 2023, 4 (01)