Tailoring dehydrogenation in lithium borohydride - magnesium nickel hydride hydrogen storage systems with metal halide additives

被引:1
作者
Dansirima, Palmarin [1 ,2 ,3 ]
Grinderslev, Jakob B. [1 ,2 ]
Kristensen, Lasse G. [1 ,2 ]
Utke, Rapee [3 ]
Jensen, Torben R. [1 ,2 ]
机构
[1] Aarhus Univ, Interdisciplinary Nanosci Ctr iNANO, DK-8000 Aarhus, Denmark
[2] Aarhus Univ, Dept Chem, DK-8000 Aarhus C, Denmark
[3] Suranaree Univ Technol, Inst Sci, Sch Chem, Nakhon Ratchasima 30000, Thailand
基金
瑞典研究理事会;
关键词
Hydrogen storage; Reactive hydride composite; Borohydrides; Metal hydrides; Catalysis; REVERSIBLE DEHYDROGENATION; LIBH4; DESTABILIZATION; SORPTION; COMPOSITES; PRESSURE;
D O I
10.1016/j.ijhydene.2024.12.124
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid state hydrogen storage may have a strong impact on future storage of renewable energy. Here we explore possible synergy effect in multi-component systems based on the lithium borohydride magnesium nickel hydride reactive hydride composite (LiBH4-Mg2NiH4). The composites of LiBH4-Mg2NiH4 are prepared by ball milling of LiBH4 with Mg2NiH4-MgNi2 or Mg2NiH4-MgH2-Ni. Thermal analysis reveals that LiBH4-Mg2NiH4-MgNi2 provides 20 degrees C lower onset dehydrogenation temperature compared to Mg2NiH4-MgH2-Ni. The Powder X-ray diffraction analysis of dehydrogenated samples indicates the similar dehydrogenation mechanisms producing the reversible phase MgNi2.5B2, with a hydrogen storage capacity of 3.6 wt% at T = 400 degrees C under 5 bar of hydrogen back pressure. The addition of transition metal halide additives (MnF2, NbF5, TiF3, ZnF2, and TiCl3) further reduces dehydrogenation temperatures from 308 degrees C to 260-266 degrees C (Delta T = 42-48 degrees C and initiates the dehydrogenation process by destabilizing LiBH4. Among all additives, ZnF2 shows the best performance offering an improved hydrogen capacity (3.76 wt%), lower dehydrogenation temperature, and suppression of diborane gas formation.
引用
收藏
页码:908 / 914
页数:7
相关论文
共 59 条
[1]   Hydride-based thermal energy storage [J].
Adams, Marcus ;
Buckley, Craig E. ;
Busch, Markus ;
Bunzel, Robin ;
Felderhoff, Michael ;
Heo, Tae Wook ;
Humphries, Terry D. ;
Jensen, Torben R. ;
Klug, Julian ;
Klug, Karl H. ;
Moller, Kasper T. ;
Paskevicius, Mark ;
Peil, Stefan ;
Peinecke, Kateryna ;
Sheppard, Drew A. ;
Stuart, Alastair D. ;
Urbanczyk, Robert ;
Wang, Fei ;
Walker, Gavin S. ;
Wood, Brandon C. ;
Weiss, Danny ;
Grant, David M. .
PROGRESS IN ENERGY, 2022, 4 (03)
[2]   Challenges to developing materials for the transport and storage of hydrogen [J].
Allendorf, Mark D. ;
Stavila, Vitalie ;
Snider, Jonathan L. ;
Witman, Matthew ;
Bowden, Mark E. ;
Brooks, Kriston ;
Tran, Ba L. ;
Autrey, Tom .
NATURE CHEMISTRY, 2022, 14 (11) :1214-+
[3]   Catalytic influence of Ni-based additives on the dehydrogenation properties of ball milled MgH2 [J].
Amama, Placidus B. ;
Grant, John T. ;
Spowart, Jonathan E. ;
Shamberger, Patrick J. ;
Voevodin, Andrey A. ;
Fisher, Timothy S. .
JOURNAL OF MATERIALS RESEARCH, 2011, 26 (21) :2725-2734
[4]   Stability and Reversibility of Lithium Borohydrides Doped by Metal Halides and Hydrides [J].
Au, Ming ;
Jurgensen, Arthur R. ;
Spencer, William A. ;
Anton, Donald L. ;
Pinkerton, Frederick E. ;
Hwang, Son-Jong ;
Kim, Chul ;
Bowman, Robert C., Jr. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (47) :18661-18671
[5]   Unexpected kinetic effect of MgB2 in reactive hydride composites containing complex borohydrides [J].
Barkhordarian, Gagik ;
Klassen, Thomas ;
Dornheim, Martin ;
Bormann, Ruediger .
JOURNAL OF ALLOYS AND COMPOUNDS, 2007, 440 (1-2) :L18-L21
[6]   A new mutually destabilized reactive hydride system: LiBH4-Mg2NiH4 [J].
Bergemann, Nils ;
Pistidda, Claudio ;
Uptmoor, Maike ;
Milanese, Chiara ;
Santoru, Antonio ;
Emmler, Thomas ;
Puszkiel, Julian ;
Dornheim, Martin ;
Klassen, Thomas .
JOURNAL OF ENERGY CHEMISTRY, 2019, 34 :240-254
[7]   Role of additives in LiBH4-MgH2 reactive hydride composites for sorption kinetics [J].
Boesenberg, U. ;
Kim, J. W. ;
Gosslar, D. ;
Eigen, N. ;
Jensen, T. R. ;
von Colbe, J. M. Bellosta ;
Zhou, Y. ;
Dahms, M. ;
Kim, D. H. ;
Guenther, R. ;
Cho, Y. W. ;
Oh, K. H. ;
Klassen, T. ;
Bormann, R. ;
Dornheim, M. .
ACTA MATERIALIA, 2010, 58 (09) :3381-3389
[8]   On the chemical state and distribution of Zr- and V-based additives in reactive hydride composites [J].
Boesenberg, U. ;
Vainio, U. ;
Pranzas, P. K. ;
von Colbe, J. M. Bellosta ;
Goerigk, G. ;
Welter, E. ;
Dornheim, M. ;
Schreyer, A. ;
Bormann, R. .
NANOTECHNOLOGY, 2009, 20 (20)
[9]   Hydrogen sorption properties of MgH2-LiBH4 composites [J].
Boesenberg, Ulrike ;
Doppiu, Stefania ;
Mosegaard, Lene ;
Barkhordarian, Gagik ;
Eigen, Nico ;
Borgschulte, Andreas ;
Jensen, Torbert R. ;
Cerenius, Yngve ;
Gutfleisch, Oliver ;
Klassen, Thomas ;
Dornheim, Martin ;
Bormann, Ruediger .
ACTA MATERIALIA, 2007, 55 (11) :3951-3958
[10]   Towards easy reversible dehydrogenation of LiBH4 by catalyzing hierarchic nanostructured CoB [J].
Cai, Weitong ;
Wang, Hui ;
Liu, Jiangwen ;
Jiao, Lifang ;
Wang, Yijing ;
Ouyang, Liuzhang ;
Sun, Tai ;
Sun, Dalin ;
Wang, Haihui ;
Yao, Xiangdong ;
Zhu, Min .
NANO ENERGY, 2014, 10 :235-244