Ultrabroadband integrated electro-optic frequency comb in lithium tantalate

被引:9
作者
Zhang, Junyin [1 ,2 ]
Wang, Chengli [1 ,2 ]
Denney, Connor [3 ]
Riemensberger, Johann [1 ,2 ,5 ]
Lihachev, Grigory [1 ,2 ]
Hu, Jianqi [1 ,2 ]
Kao, Wil [1 ,2 ]
Blesin, Terence [1 ,2 ]
Kuznetsov, Nikolai [1 ,2 ]
Li, Zihan [1 ,2 ]
Churaev, Mikhail [1 ,2 ]
Ou, Xin [4 ]
Santamaria-Botello, Gabriel [3 ]
Kippenberg, Tobias J. [1 ,2 ]
机构
[1] Swiss Fed Inst Technol Lausanne EPFL, Inst Phys, Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Inst Elect & Micro Engn, Lausanne, Switzerland
[3] Colorado Sch Mines, Dept Elect Engn, Golden, CO 80401 USA
[4] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Mat Integrated Circuits, Shanghai, Peoples R China
[5] Norwegian Univ Sci & Technol, Dept Elect Syst, Trondheim, Norway
基金
芬兰科学院; 瑞士国家科学基金会;
关键词
MICROWAVE; CONVERSION; SOLITONS;
D O I
10.1038/s41586-024-08354-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The integrated frequency comb generator based on Kerr parametric oscillation1 has led to chip-scale, gigahertz-spaced combs with new applications spanning hyperscale telecommunications, low-noise microwave synthesis, light detection and ranging, and astrophysical spectrometer calibration2, 3, 4, 5-6. Recent progress in lithium niobate (LiNbO3) photonic integrated circuits (PICs) has resulted in chip-scale, electro-optic (EO) frequency combs7,8, offering precise comb-line positioning and simple operation without relying on the formation of dissipative Kerr solitons. However, current integrated EO combs face limited spectral coverage due to the large microwave power required to drive the non-resonant capacitive electrodes and the strong intrinsic birefringence of LiNbO3. Here we overcome both challenges with an integrated triply resonant architecture, combining monolithic microwave integrated circuits with PICs based on the recently emerged thin-film lithium tantalate (LiTaO3)9. With resonantly enhanced EO interaction and reduced birefringence in LiTaO3, we achieve a fourfold comb span extension and a 16-fold power reduction compared to the conventional, non-resonant microwave design. Driven by a hybrid integrated laser diode, the comb spans over 450 nm (more than 60 THz) with more than 2,000 lines, and the generator fits within a compact 1-cm2 footprint. We additionally observe that the strong EO coupling leads to an increased comb existence range approaching the full free spectral range of the optical microresonator. The ultra-broadband comb generator, combined with detuning-agnostic operation, could advance chip-scale spectrometry and ultra-low-noise millimetre wave synthesis10, 11, 12-13 and unlock octave-spanning EO combs. The methodology of co-designing microwave and photonics can be extended to a wide range of integrated EOs applications14, 15-16.
引用
收藏
页码:1096 / 1103
页数:9
相关论文
共 51 条
[1]   Photonic chip-based resonant supercontinuum via pulse-driven Kerr microresonator solitons [J].
Anderson, Miles H. ;
Bouchand, Romain ;
Liu, Junqiu ;
Weng, Wenle ;
Ewelina Obrzud ;
Herr, Tobias ;
Kippenberg, Tobias J. .
OPTICA, 2021, 8 (06) :771-779
[2]   Frequency comb generation via synchronous pumped χ(3) resonator on thin-film lithium niobate [J].
Cheng, Rebecca ;
Yu, Mengjie ;
Shams-Ansari, Amirhassan ;
Hu, Yaowen ;
Reimer, Christian ;
Zhang, Mian ;
Loncar, Marko .
NATURE COMMUNICATIONS, 2024, 15 (01)
[3]   Superconducting cavity electro-optics: A platform for coherent photon conversion between superconducting and photonic circuits [J].
Fan, Linran ;
Zou, Chang-Ling ;
Cheng, Risheng ;
Guo, Xiang ;
Han, Xu ;
Gong, Zheng ;
Wang, Sihao ;
Tang, Hong X. .
SCIENCE ADVANCES, 2018, 4 (08)
[4]   Parallel convolutional processing using an integrated photonic tensor core [J].
Feldmann, J. ;
Youngblood, N. ;
Karpov, M. ;
Gehring, H. ;
Li, X. ;
Stappers, M. ;
Le Gallo, M. ;
Fu, X. ;
Lukashchuk, A. ;
Raja, A. S. ;
Liu, J. ;
Wright, C. D. ;
Sebastian, A. ;
Kippenberg, T. J. ;
Pernice, W. H. P. ;
Bhaskaran, H. .
NATURE, 2021, 589 (7840) :52-+
[5]   Integrated lithium niobate microwave photonic processing engine [J].
Feng, Hanke ;
Ge, Tong ;
Guo, Xiaoqing ;
Wang, Benshan ;
Zhang, Yiwen ;
Chen, Zhaoxi ;
Zhu, Sha ;
Zhang, Ke ;
Sun, Wenzhao ;
Huang, Chaoran ;
Yuan, Yixuan ;
Wang, Cheng .
NATURE, 2024, 627 (8002) :80-+
[6]  
Guo H, 2017, NAT PHYS, V13, P94, DOI [10.1038/NPHYS3893, 10.1038/nphys3893]
[7]  
Herr T, 2014, NAT PHOTONICS, V8, P145, DOI [10.1038/nphoton.2013.343, 10.1038/NPHOTON.2013.343]
[8]   Cavity electro-optics in thin-film lithium niobate for efficient microwave-to-optical transduction [J].
Holzgrafe, Jeffrey ;
Sinclair, Neil ;
Zhu, Di ;
Shams-Ansari, Amirhassan ;
Colangelo, Marco ;
Hu, Yaowen ;
Zhang, Mian ;
Berggren, Karl K. ;
Loncar, Marko .
OPTICA, 2020, 7 (12) :1714-1720
[9]   Mirror-induced reflection in the frequency domain [J].
Hu, Yaowen ;
Yu, Mengjie ;
Sinclair, Neil ;
Zhu, Di ;
Cheng, Rebecca ;
Wang, Cheng ;
Loncar, Marko .
NATURE COMMUNICATIONS, 2022, 13 (01)
[10]   High-efficiency and broadband on-chip electro-optic frequency comb generators [J].
Hu, Yaowen ;
Yu, Mengjie ;
Buscaino, Brandon ;
Sinclair, Neil ;
Zhu, Di ;
Cheng, Rebecca ;
Shams-Ansari, Amirhassan ;
Shao, Linbo ;
Zhang, Mian ;
Kahn, Joseph M. ;
Loncar, Marko .
NATURE PHOTONICS, 2022, 16 (10) :679-+