Accuracy and interpretability of machine learning-based approaches for daily ETo estimation under semi-arid climate in the West African Sahel

被引:2
作者
Yonaba, Roland [1 ]
Kiema, Arsene [2 ]
Tazen, Fowe [1 ]
Belemtougri, Axel [1 ]
Cisse, Mansourou [1 ]
Mounirou, Lawani Adjadi [1 ]
Bodian, Ansoumana [3 ]
Koita, Mahamadou [1 ]
Karambiri, Harouna [1 ]
机构
[1] Inst Int Ingn Eau & Environm 2iE, Lab Eaux Hydrosyst et Agr LEHSA, 01 BP 594, Ouagadougou, Burkina Faso
[2] Minist Environm Eau & Assainissement, Direct Regionale Eau & Assainissement Ctr Nord, Serv Reg Etud Stat & Sectorielles, 03 BP 7044, Ouagadougou, Burkina Faso
[3] Univ Gaston Berger UGB, Lab Leidi Dynam Terr & Dev, BP 234, St Louis, Senegal
关键词
Burkina Faso; Interpretability; Machine learning; Reference evapotranspiration; SHAP; West African Sahel; REFERENCE EVAPOTRANSPIRATION; MODELS; PREDICTION; EQUATIONS; ALGORITHMS; INSIGHTS; TREND; SVM;
D O I
10.1007/s12145-024-01591-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This study evaluates the accuracy and interpretability of 12 selected machine learning (ML) models for estimating daily reference evapotranspiration (ETo) under semi-arid conditions in Burkina Faso, West African Sahel. Meteorological data (1988-2017) from 9 synoptic stations are used to evaluate model performance. The interpreted variable importance was assessed using SHapley Additive exPlanations (SHAP) values and compared against the reference FAO-56 Penman-Monteith model. Spatiotemporal patterns in meteorological variables influencing ETo are first analysed through trend and change point analyses. The ML models are then calibrated station-wise, using a fivefold cross validation scheme. All ML models demonstrated strong predictive capabilities (R2 = 0.93-1.00, RMSE = 0.05-0.20 mm day-1, NRMSE = 0.40%-2.30%, KGE = 0.99-1.00 at the daily timescale). In terms of accuracy, Extreme Gradient Boosting (XGBoost) emerged as the top-performing model (lowest MAE = 0.03 mm day-1). Tree-based ensemble methods and advanced neural networks consistently outperformed other ML approaches across multiple evaluation metrics. At the monthly and annual timescales, ML models accurately captured ETo patterns and interannual variability. The SHAP value analysis showed that Random Forest (RF), Support Vector Machine (SVM), and boosted models (GBoost and XGBoost) most accurately represented the variable importance hierarchies for ETo estimation, although most models overestimated wind speed contribution. This study highlights the potential of ML approaches for ETo estimation in semi-arid regions, while emphasizing the importance of model interpretability. The findings have significant implications for applications in irrigation planning, water resource management, and climate impact assessment in semi-arid regions.
引用
收藏
页数:24
相关论文
共 117 条
[41]  
2, 10.1126/science.12.306.731-a, DOI 10.1126/SCIENCE.12.306.731-A]
[42]   Characterization of the rainy season in Burkina Faso and it's representation by regional climate models [J].
Ibrahim, B. ;
Polcher, J. ;
Karambiri, H. ;
Rockel, B. .
CLIMATE DYNAMICS, 2012, 39 (06) :1287-1302
[43]   Solar and net radiation-based equations to estimate reference evapotranspiration in humid climates [J].
Irmak, S ;
Irmak, A ;
Allen, RG ;
Jones, JW .
JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2003, 129 (05) :336-347
[44]   Why Do Small Earth Dams Deteriorate: Insights from Physical Investigations in the West African Sahel [J].
Kabore, Mamadou Pousga Junior ;
Lawane, Abdou ;
Yonaba, Roland ;
Biaou, Angelbert Chabi ;
Nadjibou, Abdoulaye ;
Pantet, Anne .
RESOURCES-BASEL, 2024, 13 (06)
[45]   Quantification of Soil Deep Drainage and Aquifer Recharge Dynamics according to Land Use and Land Cover in the Basement Zone of Burkina Faso in West Africa [J].
Kafando, Moussa Bruno ;
Koita, Mahamadou ;
Zoure, Cheick Oumar ;
Yonaba, Roland ;
Niang, Dial .
SUSTAINABILITY, 2022, 14 (22)
[46]   Use of Multidisciplinary Approaches for Groundwater Recharge Mechanism Characterization in Basement Aquifers: Case of Sanon Experimental Catchment in Burkina Faso [J].
Kafando, Moussa Bruno ;
Koita, Mahamadou ;
Le Coz, Mathieu ;
Yonaba, Ousmane Roland ;
Fowe, Tazen ;
Zoure, Cheick Oumar ;
Faye, Moussa Diagne ;
Leye, Babacar .
WATER, 2021, 13 (22)
[47]   Physics-informed machine learning [J].
Karniadakis, George Em ;
Kevrekidis, Ioannis G. ;
Lu, Lu ;
Perdikaris, Paris ;
Wang, Sifan ;
Yang, Liu .
NATURE REVIEWS PHYSICS, 2021, 3 (06) :422-440
[48]   Physics-informed machine learning: case studies for weather and climate modelling [J].
Kashinath, K. ;
Mustafa, M. ;
Albert, A. ;
Wu, J-L. ;
Jiang, C. ;
Esmaeilzadeh, S. ;
Azizzadenesheli, K. ;
Wang, R. ;
Chattopadhyay, A. ;
Singh, A. ;
Manepalli, A. ;
Chirila, D. ;
Yu, R. ;
Walters, R. ;
White, B. ;
Xiao, H. ;
Tchelepi, H. A. ;
Marcus, P. ;
Anandkumar, A. ;
Hassanzadeh, P. ;
Prabhat .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2194)
[49]   Optimal Detection of Changepoints With a Linear Computational Cost [J].
Killick, R. ;
Fearnhead, P. ;
Eckley, I. A. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (500) :1590-1598
[50]  
Kramer O., 2013, Dimensionality Reduction with Unsupervised Nearest Neighbors, P13, DOI DOI 10.1007/978-3-642-38652-72